// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/huawei_ascend_npu/bridges/graph.h" #include "lite/kernels/huawei_ascend_npu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace huawei_ascend_npu { int ConcatConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[NPU] Converting " << op_type << " ... "; // Get input and output vars and op attributes auto x_names = op_info->Input("X"); auto axis = op_info->GetAttr("axis"); auto out_name = op_info->Output("Out").front(); auto num = x_names.size(); if (op_info->HasInput("AxisTensor")) { // axis node auto axis_name = op_info->Input("AxisTensor").front(); auto axis_tensor = scope->FindMutableTensor(axis_name); std::shared_ptr axis_node = nullptr; if (graph->Has(axis_name)) { axis_node = graph->Get(axis_name); } else { axis_node = graph->Add(axis_name, *axis_tensor); } // concat node auto concat_node = graph->Add(out_name); auto concat_op = concat_node->data(); // set axis input concat_op->set_input_concat_dim(*axis_node->data()); INPUT_UPDATE(concat_op, concat_dim, axis_node); // set dynamic input concat_op->set_attr_N(num); concat_op->create_dynamic_input_x(num); int idx = 0; for (auto& x_name : x_names) { auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } concat_op->set_dynamic_input_x(idx, *x_node->data()); DYNAMIC_INPUT_UPDATE(concat_op, x, idx, x_node); idx++; } OUTPUT_UPDATE(concat_op, y, concat_node); } else { auto concat_node = graph->Add(out_name); auto concat_op = concat_node->data(); concat_op->set_attr_concat_dim(axis); concat_op->set_attr_N(num); concat_op->create_dynamic_input_x(num); int idx = 0; for (auto& x_name : x_names) { auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } concat_op->set_dynamic_input_x(idx, *x_node->data()); DYNAMIC_INPUT_UPDATE(concat_op, x, idx, x_node); idx++; } OUTPUT_UPDATE(concat_op, y, concat_node); } return SUCCESS; } } // namespace huawei_ascend_npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE( concat, kHuaweiAscendNPU, paddle::lite::subgraph::huawei_ascend_npu::ConcatConverter);