// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/xpu/cast_compute.h" #include "lite/backends/xpu/xpu_header_sitter.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace xpu { template void CastCompute::Run() { auto& param = this->template Param(); auto& ctx = this->ctx_->template As(); auto* x = param.X; auto* out = param.Out; int out_dtype = param.out_dtype; auto* in_data = x->template data(); int numel = x->numel(); int r = 0; // BOOL = 0;INT16 = 1;INT32 = 2;INT64 = 3;FP16 = 4;FP32 = 5;FP64 = 6; // SIZE_T = 19;UINT8 = 20;INT8 = 21; if (out_dtype == 5) { auto* out_data = out->template mutable_data(TARGET(kXPU)); r = xdnn::cast( ctx.GetRawContext(), in_data, out_data, numel); } else if (out_dtype == 2) { auto* out_data = out->template mutable_data(TARGET(kXPU)); r = xdnn::cast(ctx.GetRawContext(), in_data, out_data, numel); } else if (out_dtype == 3) { auto* out_data = out->template mutable_data(TARGET(kXPU)); r = xdnn::cast( ctx.GetRawContext(), in_data, out_data, numel); } else { CHECK(false); } CHECK_EQ(r, 0); } } // namespace xpu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(cast, kXPU, kAny, kNCHW, paddle::lite::kernels::xpu::CastCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kXPU), PRECISION(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kXPU), PRECISION(kAny))}) .Finalize();