// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/core/arena/framework.h" #include "lite/core/context.h" #include "lite/operators/subgraph_op.h" namespace paddle { namespace lite { namespace arena { void TestCase::CreateInstruction() { std::shared_ptr op = nullptr; if (place_.target == TARGET(kNPU) || place_.target == TARGET(kXPU)) { // Create a new block desc to wrap the original op desc int sub_block_idx = 0; auto sub_block_desc = new cpp::BlockDesc(); sub_block_desc->ClearOps(); sub_block_desc->ClearVars(); auto sub_block_op_desc = sub_block_desc->AddOp(); *sub_block_op_desc = *op_desc_; // Add the block desc into the subgraph op which used to replace the // original op op_desc_.reset(new cpp::OpDesc()); op_desc_->SetType("subgraph"); op_desc_->SetAttr("sub_block", sub_block_idx); auto in_names = sub_block_op_desc->input_vars(); auto out_names = sub_block_op_desc->output_vars(); op_desc_->SetInput("Inputs", in_names); op_desc_->SetOutput("Outputs", out_names); op_desc_->SetAttr>("input_data_names", in_names); op_desc_->SetAttr>("output_data_names", out_names); op = LiteOpRegistry::Global().Create(op_desc().Type()); static_cast(op.get())->SetSubBlock(sub_block_desc); } else { op = LiteOpRegistry::Global().Create(op_desc().Type()); } CHECK(op) << "no op for " << op_desc().Type(); op->Attach(*op_desc_, inst_scope_); auto kernels = op->CreateKernels({place_}); // filter out the target kernel CHECK(!kernels.empty()) << "No kernel found for place " << place_.DebugString(); auto it = std::remove_if( kernels.begin(), kernels.end(), [&](std::unique_ptr& k) { return k->alias() == alias_; }); CHECK(it != kernels.end()) << "failed to create the kernel in " << place_.DebugString() << " with alias: " << alias_; // reset final place place_ = (*it)->place(); // prepare context (*it)->SetContext(std::move(ctx_)); instruction_.reset(new Instruction(op, std::move(*it))); #ifdef LITE_WITH_PROFILE instruction_->set_profiler(new profile::Profiler()); #endif } void TestCase::PrepareInputsForInstruction() { for (auto& arg : op_desc().InputArgumentNames()) { for (auto& var : op_desc().Input(arg)) { std::string kernel_key = instruction_->kernel()->key_with_alias(); const auto* param_type = ParamTypeRegistry::Global().RetrieveInArgument( place_, kernel_key, arg); const Type* inst_type = nullptr; if (param_type->type->IsTensor()) { inst_type = Type::GetTensorTy(TARGET(kHost)); } else if (param_type->type->IsTensorList()) { inst_type = Type::GetTensorListTy(TARGET(kHost)); } else { LOG(FATAL) << "unsupported param_type"; } CHECK(scope_->FindVar(var)); if (!TargetCompatibleTo(*inst_type, *param_type->type)) { /// Create a tensor or tensor_array in the instruction's scope, /// alloc memory and then copy data there. if (param_type->type->IsTensor()) { const auto* shared_tensor = scope_->FindTensor(var); auto* target_tensor = inst_scope_->NewTensor(var); CHECK(!shared_tensor->dims().empty()) << "shared_tensor is empty yet"; target_tensor->Resize(shared_tensor->dims()); TargetCopy(param_type->type->target(), target_tensor->mutable_data(param_type->type->target(), shared_tensor->memory_size()), shared_tensor->raw_data(), shared_tensor->memory_size()); } else if (param_type->type->IsTensorList()) { const auto* shared_tensor_array = scope_->FindVar(var)->GetMutable>(); auto* target_tensor_array = inst_scope_->Var(var)->GetMutable>(); CHECK(!shared_tensor_array->empty()) << "shared_tensor_array is empty yet"; target_tensor_array->resize(shared_tensor_array->size()); for (int i = 0; i < shared_tensor_array->size(); i++) { target_tensor_array->at(i).Resize( shared_tensor_array->at(i).dims()); TargetCopy(param_type->type->target(), target_tensor_array->at(i).mutable_data( param_type->type->target(), shared_tensor_array->at(i).memory_size()), shared_tensor_array->at(i).raw_data(), shared_tensor_array->at(i).memory_size()); } } else { LOG(FATAL) << "not support"; } } } } } template bool TestCase::CheckTensorPrecision(const Tensor* a_tensor, const Tensor* b_tensor, float abs_error) { CHECK(a_tensor); CHECK(b_tensor); CHECK(ShapeEquals(a_tensor->dims(), b_tensor->dims())); CHECK(a_tensor->lod() == b_tensor->lod()) << "lod not match"; // The baseline should output in host devices. CHECK(b_tensor->target() == TARGET(kHost) || b_tensor->target() == TARGET(kX86) || b_tensor->target() == TARGET(kARM)); const T* a_data{}; switch (a_tensor->target()) { case TARGET(kX86): case TARGET(kHost): case TARGET(kARM): a_data = static_cast(a_tensor->raw_data()); break; default: // Before compare, need to copy data from `target` device to host. LOG(FATAL) << "Not supported"; } CHECK(a_data); const T* b_data = static_cast(b_tensor->raw_data()); bool success = true; for (int i = 0; i < a_tensor->dims().production(); i++) { EXPECT_NEAR(a_data[i], b_data[i], abs_error); if (fabsf(a_data[i] - b_data[i]) > abs_error) { success = false; } } return success; } bool TestCase::CheckPrecision(const Tensor* a_tensor, const Tensor* b_tensor, float abs_error, PrecisionType precision_type) { PrecisionType precision_type_t = precision_type; if (precision_type == PRECISION(kAny)) { precision_type_t = b_tensor->precision(); } CHECK(precision_type_t == b_tensor->precision()) << "arg precision type and base tensor precision type are not matched! " "arg precision type is: " << PrecisionToStr(precision_type) << ", base tensor precision type is: " << PrecisionToStr(b_tensor->precision()); CHECK(a_tensor->precision() == b_tensor->precision()) << "real tensor precision type and base tensor precision type are not " "matched! real tensor precision type is: " << PrecisionToStr(a_tensor->precision()) << ", base tensor precision type is: " << PrecisionToStr(b_tensor->precision()); switch (precision_type_t) { case PRECISION(kFloat): return CheckTensorPrecision(a_tensor, b_tensor, abs_error); case PRECISION(kInt8): return CheckTensorPrecision(a_tensor, b_tensor, abs_error); case PRECISION(kInt32): return CheckTensorPrecision(a_tensor, b_tensor, abs_error); case PRECISION(kInt64): return CheckTensorPrecision(a_tensor, b_tensor, abs_error); case PRECISION(kBool): return CheckTensorPrecision(a_tensor, b_tensor, abs_error); default: LOG(FATAL) << "not support type: " << PrecisionToStr(precision_type); return false; } } bool TestCase::CheckPrecision(const std::string& var_name, float abs_error, PrecisionType precision_type) { bool success = true; if (inst_scope_->FindVar(var_name)->IsType()) { auto a_tensor = inst_scope_->FindTensor(var_name); auto b_tensor = base_scope_->FindTensor(var_name); success = success && CheckPrecision(a_tensor, b_tensor, abs_error, precision_type); } else if (inst_scope_->FindVar(var_name)->IsType>()) { auto a_tensor_array = inst_scope_->FindVar(var_name)->GetMutable>(); auto b_tensor_array = base_scope_->FindVar(var_name)->GetMutable>(); CHECK_EQ(a_tensor_array->size(), b_tensor_array->size()); for (int i = 0; i < a_tensor_array->size(); i++) { Tensor* a_tensor = &(a_tensor_array->at(i)); Tensor* b_tensor = &(b_tensor_array->at(i)); if (a_tensor->dims().size() == 0 && b_tensor->dims().size() == 0) { continue; } success = success && CheckPrecision(a_tensor, b_tensor, abs_error, precision_type); } } else { LOG(FATAL) << "unsupported var type"; } return success; } TestCase::~TestCase() { if (op_desc_->Type() == "subgraph") { // Release the subblock desc of Subgraph op auto subgraph_op = const_cast( static_cast(instruction_->op())); CHECK(subgraph_op); auto sub_block_desc = subgraph_op->GetSubBlock(); if (sub_block_desc) { delete sub_block_desc; } } } } // namespace arena } // namespace lite } // namespace paddle