// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { int InterpolateConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_var_name = op_info->Input("X").front(); auto out_var_name = op_info->Output("Out").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto out = scope->FindVar(out_var_name)->GetMutable(); auto x_dims = x->dims(); CHECK_EQ(x_dims.size(), 4); auto scale = op_info->GetAttr("scale"); auto out_w = op_info->GetAttr("out_w"); auto out_h = op_info->GetAttr("out_h"); auto align_corners = op_info->GetAttr("align_corners"); CHECK(graph->HasNode(x_var_name)); auto input_tensor = graph->GetNode(x_var_name); auto in_h = x_dims[2]; auto in_w = x_dims[3]; // Priority: SizeTensor > OutSize > Scale > scale > out_h/out_w if (HasInputArg(op_info, scope, "SizeTensor")) { LOG(ERROR) << "Not support SizeTensor input now"; CHECK(0); } else { if (HasInputArg(op_info, scope, "Scale")) { LOG(ERROR) << "Not support Scale input now"; CHECK(0); } if (scale > 0) { out_h = static_cast(in_h * scale); out_w = static_cast(in_w * scale); out_h = out_h > 0 ? out_h : -1; out_w = out_w > 0 ? out_w : -1; } if (HasInputArg(op_info, scope, "OutSize")) { LOG(ERROR) << "Not support OutSize input now"; CHECK(0); } } auto output_tensor = graph->AddNode(out_var_name, out->dims().Vectorize(), CNML_TENSOR, CNML_NCHW, graph->FPType()); cnmlBaseOp_t interp_op; cnmlNearestNeighborOpParam_t nn_param; CNML_CALL(cnmlCreateNearestNeighborOpParam(&nn_param, out_w, out_h)); CNML_CALL(cnmlSetNearestNeighborAlignCorner(&nn_param, align_corners)); CNML_CALL(cnmlCreateNearestNeighborOp(&interp_op, input_tensor->mlu_tensor(), output_tensor->mlu_tensor(), nn_param)); CNML_CALL(cnmlDestroyNearestNeighborOpParam(&nn_param)); graph->FuseOp(interp_op); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(nearest_interp, kMLU, paddle::lite::subgraph::mlu::InterpolateConverter);