/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef TRANSPOSE_OP #include "operators/kernel/transpose_kernel.h" namespace paddle_mobile { namespace operators { template void TransposeFunc(const int numel, const T* input, const vector axis, const vector old_strides, const vector new_strides, T* output) { for (int i = 0; i < numel; ++i) { int old_idx = 0; int idx = i; for (int j = 0; j < axis.size(); ++j) { int order = axis[j]; old_idx += (idx / new_strides[j]) * old_strides[order]; idx %= new_strides[j]; } output[i] = input[old_idx]; } } template <> void TransposeKernel::Compute(const TransposeParam& param) const { const auto* input_x = param.InputX(); const auto input_x_dims = input_x->dims(); auto* out = param.Out(); const auto axis = param.Axis(); const auto* input_x_data = input_x->data(); auto* out_data = out->mutable_data(); size_t axis_size = axis.size(); std::vector new_dims; new_dims.reserve(axis_size); for (auto c : axis) { new_dims.push_back(input_x_dims[c]); } std::vector old_strides; std::vector new_strides; for (int i = 0; i < axis.size(); i++) { int temp_old = 1; int temp_new = 1; for (int j = i + 1; j < axis.size(); j++) { temp_old *= input_x_dims[j]; temp_new *= new_dims[j]; } old_strides.push_back(temp_old); new_strides.push_back(temp_new); } TransposeFunc(input_x->numel(), input_x_data, axis, old_strides, new_strides, out_data); } } // namespace operators } // namespace paddle_mobile #endif