// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/opencl/conv_buffer_compute.h" #include #include "lite/backends/opencl/cl_image_converter.h" #include "lite/backends/opencl/cl_include.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { void ConvCompute::PrepareForRun() { const auto& param = this->Param(); auto x_dims = param.x->dims(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); int bs = x_dims[0]; int c_in = x_dims[1]; int h_out = output_dims[2]; int w_out = output_dims[3]; int kernel_h = filter_dims[2]; // oihw int kernel_w = filter_dims[3]; auto paddings = *param.paddings; auto dilations = *param.dilations; int stride_h = param.strides[0]; int stride_w = param.strides[1]; int pad_h = paddings[0]; int pad_w = paddings[2]; int groups = param.groups; bool relu_fused = param.fuse_relu; bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1); bool zero_pad = (pad_h == 0) && (pad_w == 0); bool pad_equal = ((paddings[0] == paddings[1]) && (paddings[2] == paddings[3])); VLOG(3) << "Is relu fused? / " << (relu_fused ? "Yes" : "No"); VLOG(3) << "groups:" << groups << " stride_h:" << stride_h << " stride_w:" << stride_w << " pad_h:" << pad_h << " pad_w:" << pad_w << " kernel_h:" << kernel_h << " kernel_h:" << kernel_h; VLOG(3) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2] << " " << x_dims[3]; VLOG(3) << "output_dims:" << output_dims[0] << " " << output_dims[1] << " " << output_dims[2] << " " << output_dims[3]; VLOG(3) << "filter_dims:" << filter_dims[0] << " " << filter_dims[1] << " " << filter_dims[2] << " " << filter_dims[3]; if (kernel_h == 1 && kernel_w == 1 && stride_h == 1 && stride_w == 1 && zero_pad && no_dilation && pad_equal) { // conv2d_1x1 /* TODO(ysh329): CL_OUT_OF_MEMORY when use gemm_batched OpenCL kernel, use gemm_batched_naive instead. kernel_func_names_.push_back("gemm_batch"); */ kernel_func_names_.push_back("gemm_batch_naive"); kernel_func_paths_.push_back("buffer/fc_kernel.cl"); if (relu_fused) { build_options_.push_back("-DCL_DTYPE_float -DRELU"); } else if (param.activation_param.active_type == lite_api::ActivationType::kRelu6) { build_options_.push_back("-DCL_DTYPE_float -DRELU6"); } else { build_options_.push_back("-DCL_DTYPE_float"); } impl_ = &ConvCompute::Conv2d1x1; } else if (pad_equal) { kernel_func_names_.push_back("im2col"); /* TODO(ysh329): CL_OUT_OF_MEMORY when use gemm_batched OpenCL kernel, use gemm_batched_naive instead. kernel_func_names_.push_back("gemm_batch"); */ kernel_func_names_.push_back("gemm_batch_naive"); kernel_func_paths_.push_back("buffer/im2col_kernel.cl"); kernel_func_paths_.push_back("buffer/fc_kernel.cl"); build_options_.push_back("-DCL_DTYPE_float"); if (relu_fused) { build_options_.push_back("-DCL_DTYPE_float -DRELU"); } else if (param.activation_param.active_type == lite_api::ActivationType::kRelu6) { build_options_.push_back("-DCL_DTYPE_float -DRELU6"); } else { build_options_.push_back("-DCL_DTYPE_float"); } impl_ = &ConvCompute::GemmlikeConv2d; col_buffer_.reset(new lite::Tensor); col_buffer_->Resize({bs, c_in, kernel_h * kernel_w, h_out * w_out}); col_buffer_->mutable_data(TARGET(kOpenCL)); } else { LOG(FATAL) << "This pad not support ! " << paddings[0] << ", " << paddings[1] << ", " << paddings[2] << ", " << paddings[3]; } for (size_t i = 0; i < kernel_func_names_.size(); i++) { context.cl_context()->AddKernel(kernel_func_names_[i], kernel_func_paths_[i], build_options_[i], time_stamp_); } } void ConvCompute::GemmlikeConv2d() { const auto& param = this->Param(); auto x_dims = param.x->dims(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); int bs = x_dims[0]; int c_in = x_dims[1]; int h_in = x_dims[2]; int w_in = x_dims[3]; auto paddings = *param.paddings; auto dilations = *param.dilations; int c_out = output_dims[1]; int h_out = output_dims[2]; int w_out = output_dims[3]; int kernel_h = filter_dims[2]; int kernel_w = filter_dims[3]; int pad_h = paddings[0]; int pad_w = paddings[2]; int stride_h = param.strides[0]; int stride_w = param.strides[1]; int dilation_h = dilations[0]; int dilation_w = dilations[1]; auto* x_buf = param.x->data(); auto* filter_buf = param.filter->data(); auto* bias_buf = (param.bias == nullptr) ? static_cast(nullptr) : param.bias->data(); auto* output_buf = param.output->mutable_data(TARGET(kOpenCL)); auto* col_buf = col_buffer_->mutable_data(); auto& context = ctx_->As(); std::stringstream kernel_key; kernel_key << kernel_func_names_[0] << build_options_[0] << time_stamp_; auto img2col_kernel = context.cl_context()->GetKernel(kernel_key.str()); int n_threads = c_in * h_out * w_out; int in_stride = c_in * h_in * w_in; int out_stride = c_in * kernel_h * kernel_w * h_out * w_out; int img_offset = 0; int col_offset = 0; int arg_idx = 0; cl_int status; for (int b = 0; b < bs; b++) { img_offset = b * in_stride; col_offset = b * out_stride; arg_idx = 0; status = img2col_kernel.setArg(arg_idx, *x_buf); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, img_offset); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, n_threads); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, h_in); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, w_in); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, kernel_h); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, kernel_w); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, pad_h); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, pad_w); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, stride_h); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, stride_w); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, dilation_h); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, dilation_w); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, h_out); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, w_out); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, *col_buf); CL_CHECK_FATAL(status); status = img2col_kernel.setArg(++arg_idx, col_offset); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{static_cast(out_stride)}; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( img2col_kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, nullptr); CL_CHECK_FATAL(status); } int m = c_out; int k = c_in * kernel_h * kernel_w; int n = h_out * w_out; VLOG(4) << "m = " << m << " n = " << n << " k = " << k; kernel_key.str(""); kernel_key << kernel_func_names_[1] << build_options_[1] << time_stamp_; auto gemm_kernel = context.cl_context()->GetKernel(kernel_key.str()); GemmBatched( gemm_kernel, col_buf, filter_buf, bias_buf, output_buf, bs, m, n, k); } void ConvCompute::Conv2d1x1() { const auto& param = *param_.get_mutable(); const int batch_size = param.x->dims()[0]; const int k = param.x->dims()[1]; // K: input_channel const int n = param.x->dims()[2] * param.x->dims()[3]; // N == X_HxW == input_h * input_w const int m = param.output->dims()[1]; // M: output_channel == filter number VLOG(4) << "m = " << m << " n = " << n << " k = " << k; if (param.groups != 1) { LOG(FATAL) << "conv2d_1x1 with group > 1 not supported and param.groups = " << param.groups; } auto* x_d = param.x->data(); auto* filter_d = param.filter->data(); auto* bias_d = (param.bias == nullptr) ? static_cast(nullptr) : param.bias->data(); auto* output_d = param.output->mutable_data(TARGET(kOpenCL)); auto& context = ctx_->As(); std::stringstream kernel_key; kernel_key << kernel_func_names_.front() << build_options_.front() << time_stamp_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); GemmBatched(kernel, x_d, filter_d, bias_d, output_d, batch_size, m, n, k); } // a: filter_d ==> <=> // b: x_d ==> <=> // c: output_d ==> <=> void ConvCompute::GemmBatched(cl::Kernel& kernel, const cl::Buffer* x_d, const cl::Buffer* filter_d, const cl::Buffer* bias_d, cl::Buffer* output_d, const int batch_size, const int m, const int n, const int k) { /* TODO(ysh329): CL_OUT_OF_MEMORY when use gemm_batch OpenCL kernel, use gemm_batch_naive instead. auto global_work_size = cl::NDRange{static_cast((m + 7) / 8), static_cast((n + 3) / 4), static_cast(batch_size)}; */ auto global_work_size = cl::NDRange{static_cast(m), static_cast(n), static_cast(batch_size)}; auto local_work_size = cl::NDRange{16, 16}; // cl::NullRange; auto& context = ctx_->As(); cl_int status; int arg_idx = 0; status = kernel->setArg(arg_idx, *filter_d); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, *x_d); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, *bias_d); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, *output_d); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, m); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, n); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, k); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, batch_size); CL_CHECK_FATAL(status); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( *kernel.get(), cl::NullRange, global_work_size, local_work_size, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(output_d, event_); } void ConvCompute::Run() { (this->*impl_)(); } } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(conv2d, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::ConvCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .Finalize();