// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class ReluCompute : public KernelLite { public: using param_t = operators::ActivationParam; std::string doc() const override { return "Relu using cl::Buffer, kFloat"; } void PrepareForRun() override { auto& context = ctx_->As(); context.cl_context()->AddKernel(kernel_func_name_, "buffer/relu_kernel.cl", build_options_, time_stamp_); } void Run() override { auto& param = *param_.get_mutable(); const auto& x_dims = param.X->dims(); size_t count = x_dims.production(); auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto* x_buf = param.X->data(); auto* out_buf = param.Out->mutable_data(TARGET(kOpenCL)); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_ << time_stamp_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); VLOG(4) << TargetToStr(param.X->target()); VLOG(4) << TargetToStr(param.Out->target()); int arg_idx = 0; cl_int status = kernel->setArg(arg_idx, *x_buf); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, (const int)count); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, *out_buf); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{count}; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( *kernel.get(), cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_buf, event_); } private: std::string kernel_func_name_{"relu"}; std::string build_options_{"-DCL_DTYPE_float -DRELU"}; std::string time_stamp_{GetTimeStamp()}; std::shared_ptr event_{new cl::Event}; }; class SigmoidCompute : public KernelLite { public: using param_t = operators::ActivationParam; std::string doc() const override { return "Sigmoid using cl::Buffer, kFloat"; } void PrepareForRun() override { auto& context = ctx_->As(); context.cl_context()->AddKernel(kernel_func_name_, "buffer/sigmoid_kernel.cl", build_options_, time_stamp_); } void Run() override { auto& param = *param_.get_mutable(); const auto& x_dims = param.X->dims(); size_t count = x_dims.production(); auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto* x_buf = param.X->data(); auto* out_buf = param.Out->mutable_data(TARGET(kOpenCL)); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_ << time_stamp; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); VLOG(4) << TargetToStr(param.X->target()); VLOG(4) << TargetToStr(param.Out->target()); int arg_idx = 0; cl_int status = kernel->setArg(arg_idx, *x_buf); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, (const int)count); CL_CHECK_FATAL(status); status = kernel->setArg(++arg_idx, *out_buf); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{count}; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( *kernel.get(), cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_buf, event_); } private: std::string kernel_func_name_{"sigmoid"}; std::string build_options_{"-DCL_DTYPE_float -DSIGMOID"}; std::string time_stamp_{GetTimeStamp()}; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle // Relu REGISTER_LITE_KERNEL(relu, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::ReluCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .Finalize(); // Sigmoid REGISTER_LITE_KERNEL(sigmoid, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::SigmoidCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .Finalize()