// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/backends/opencl/target_wrapper.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" namespace paddle { namespace lite { template void fill_data(dtype *x, const int length, int set_value = -1) { if (set_value == -1) { for (size_t idx = 0; idx < length; ++idx) { x[idx] = idx; } } else if (set_value != -1) { for (size_t idx = 0; idx < length; ++idx) { x[idx] = set_value; } } } template void elementwise_compute_ref(const dtype *x_data, const dtype *y_data, dtype *out_data, const DDim &x_dims, const DDim &y_dims, int axis, const std::string elt_type, bool use_relu = false) { if (axis < 0) { axis = x_dims.size() - y_dims.size(); } int batch = 1; int channels = 1; int num = 1; for (int i = 0; i < axis; ++i) { batch *= x_dims[i]; } for (int i = 0; i < y_dims.size(); ++i) { channels *= y_dims[i]; } for (int i = y_dims.size() + axis; i < x_dims.size(); ++i) { num *= x_dims[i]; } if (x_dims == y_dims || y_dims.size() == 2 || y_dims.size() == 1) { for (int i = 0; i < batch; ++i) { for (int j = 0; j < channels; ++j) { int offset = (i * channels + j) * num; const dtype *din_ptr = x_data + offset; const dtype diny_data = y_data[j]; dtype *dout_ptr = out_data + offset; for (int k = 0; k < num; ++k) { *dout_ptr = *din_ptr * diny_data; if (use_relu) { *dout_ptr = std::max(*dout_ptr, static_cast(0)); } dout_ptr++; din_ptr++; } } } } else if (y_dims.size() == 4) { // eg: x_dims: [1, 3, 2, 2] // y_dims: [1, 3, 1, 1] ASSERT_EQ(y_dims[2], y_dims[3]); ASSERT_EQ(y_dims[2], 1); ASSERT_EQ(y_dims[0], 1); auto y_offset = y_dims.production(); auto x_offset = x_dims.production() / y_offset; for (auto x = 0; x < x_dims.production(); ++x) { auto y = x / x_offset; out_data[x] = x_data[x] * y_data[y]; } } else { LOG(FATAL) << "unsupported Elementwise type: " << elt_type << std::endl; } } // #define PRINT_RESULT TEST(elemul_image2d_fp32, compute_kernel_elemenwise_mul) { LOG(INFO) << "main steps of test: host -> layout(buf2img on cpu) -> elemul(img) -> " "layout(img2buf on cpu) " "-> host"; // dims const int n = 1; const int c = 3; const int h = 2; const int w = 2; const DDim x_dim = DDim(std::vector{n, c, h, w}); auto out_dim = x_dim; std::vector y_dim_v{DDim(std::vector{n, c, 1, 1}), DDim(std::vector{n, c, h, w}), DDim(std::vector{h, w}), DDim(std::vector{w})}; for (auto y_dim : y_dim_v) { LOG(INFO) << "================== elementwise_mul ==================="; LOG(INFO) << "x_dim:" << x_dim << "\ty_dim:" << y_dim << "\tout_dim:" << out_dim; // tensor LOG(INFO) << "set tensors about op param"; lite::Tensor elemul_x, elemul_y, elemul_out; elemul_x.Resize(x_dim); elemul_y.Resize(y_dim); elemul_out.Resize(out_dim); // initialize tensors VLOG(4) << "initialize tensors"; paddle::lite::CLImageConverterDefault default_convertor; // x std::vector x_v(x_dim.production()); fill_data(x_v.data(), x_v.size()); // fill with index value auto x_img_shape = default_convertor.InitImageDimInfoWith(x_dim); // w, h auto x_img_w = x_img_shape[0]; auto x_img_h = x_img_shape[1]; std::vector x_img_v(x_img_w * x_img_h * 4); // 4: RGBA default_convertor.NCHWToImage(x_v.data(), x_img_v.data(), x_dim); elemul_x.mutable_data(x_img_w, x_img_h, x_img_v.data()); // y std::vector y_v(y_dim.production()); fill_data(y_v.data(), y_v.size()); // fill with index value auto y_img_shape = default_convertor.InitImageDimInfoWith(y_dim); // w, h auto y_img_w = y_img_shape[0]; auto y_img_h = y_img_shape[1]; std::vector y_img_v(y_img_shape[0] * y_img_shape[1] * 4); // 4: RGBA default_convertor.NCHWToImage(y_v.data(), y_img_v.data(), y_dim); elemul_y.mutable_data(y_img_w, y_img_h, y_img_v.data()); // out auto out_img_shape = default_convertor.InitImageDimInfoWith(out_dim); // w, h auto out_img_w = out_img_shape[0]; auto out_img_h = out_img_shape[1]; elemul_out.mutable_data(out_img_w, out_img_h); std::vector out_img_v(out_img_w * out_img_h * 4); fill_data( out_img_v.data(), out_img_v.size(), 0); // fill with zero value std::vector out_v(out_dim.production()); // operator param operators::ElementwiseParam elemulParam; elemulParam.X = &elemul_x; elemulParam.Y = &elemul_y; elemulParam.Out = &elemul_out; elemulParam.axis = -1; // set kernel auto elemul_img_kernels = KernelRegistry::Global().Create("elementwise_mul", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault)); ASSERT_FALSE(elemul_img_kernels.empty()); auto elemul_img_kernel = std::move(elemul_img_kernels.front()); VLOG(4) << "get elemul kernel: " << elemul_img_kernel->doc(); // set context and kernel args VLOG(4) << "set context and kernel args"; std::unique_ptr context(new KernelContext); context->As().InitOnce(); elemul_img_kernel->SetParam(elemulParam); std::unique_ptr elemul_img_context(new KernelContext); context->As().CopySharedTo( &(elemul_img_context->As())); elemul_img_kernel->SetContext(std::move(elemul_img_context)); // run kernel VLOG(4) << "run kernel"; elemul_img_kernel->Launch(); // download gpu result to cpu const size_t cl_image2d_row_pitch{0}; const size_t cl_image2d_slice_pitch{0}; TargetWrapperCL::ImgcpySync(out_img_v.data(), elemul_out.data(), out_img_w, out_img_h, cl_image2d_row_pitch, cl_image2d_slice_pitch, IoDirection::DtoH); default_convertor.ImageToNCHW( out_img_v.data(), out_v.data(), out_img_shape, out_dim); // compute cpu reference std::unique_ptr out_ref(new float[out_dim.production()]); elementwise_compute_ref(x_v.data(), y_v.data(), out_ref.get(), x_dim, y_dim, elemulParam.axis, "mul"); #if 0 // enable to check value of x and y for (int eidx = 0; eidx < out_dim.production(); eidx++) { auto value = out_v[eidx]; auto ref_value = out_ref.get()[eidx]; LOG(INFO) << "1st diff in this case at eidx[from 0]:" << eidx << " / " << out_dim.production() << ", x_v[" << eidx << "]:" << x_v[eidx] << ", value[" << eidx << "]:" << value << ", ref_value[" << eidx << "]:" << ref_value; } for (int i = 0; i < y_v.size(); i++) { LOG(INFO) << "y_v[" << i << "]:" << y_v[i]; } #endif for (int eidx = 0; eidx < out_dim.production(); eidx++) { auto value = out_v[eidx]; auto ref_value = out_ref.get()[eidx]; EXPECT_NEAR(value, ref_value, 1e-6); if (abs(value - ref_value) > 1e-6) { LOG(INFO) << "1st diff in this case at eidx[from 0]:" << eidx << " / " << out_dim.production() << ", value[" << eidx << "]:" << value << ", ref_value[" << eidx << "]:" << ref_value; break; } } } } } // namespace lite } // namespace paddle USE_LITE_KERNEL(elementwise_mul, kOpenCL, kFloat, kImageDefault, def);