// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" namespace paddle { namespace lite { bool _logical_xor_func(const bool& a, const bool& b) { return (a || b) && !(a && b); } bool _logical_and_func(const bool& a, const bool& b) { return (a && b); } template class LogicalXorTester : public arena::TestCase { protected: std::string input_x_ = "x"; std::string input_y_ = "y"; std::string output_ = "out"; DDim dims_{{3, 5, 4, 4}}; public: LogicalXorTester(const Place& place, const std::string& alias, DDim dims) : TestCase(place, alias), dims_(dims) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(output_); CHECK(out); out->Resize(dims_); bool* out_data = out->mutable_data(); auto* x = scope->FindTensor(input_x_); const bool* x_data = x->data(); auto* y = scope->FindTensor(input_y_); const bool* y_data = y->data(); for (int i = 0; i < dims_.production(); i++) { // out_data[i] = (x_data[i] || y_data[i]) && !((x_data[i] && y_data[i])); out_data[i] = T(x_data[i], y_data[i]); } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("logical_xor"); op_desc->SetInput("X", {input_x_}); op_desc->SetInput("Y", {input_y_}); op_desc->SetOutput("Out", {output_}); } void PrepareData() override { // std::vector data(dims_.production()); // std::vector datay(dims_.production()); bool* data; bool* datay; data = reinterpret_cast(malloc(dims_.production() * sizeof(bool))); datay = reinterpret_cast(malloc(dims_.production() * sizeof(bool))); LOG(INFO) << "dims_.production()" << ":::" << dims_.production(); for (int i = 0; i < dims_.production(); i++) { data[i] = 1; datay[i] = 1; } SetCommonTensor(input_x_, dims_, data); SetCommonTensor(input_y_, dims_, datay); } }; void test_logical(Place place) { DDimLite dims{{3, 5, 4, 4}}; std::unique_ptr logical_xor_tester( new LogicalXorTester<_logical_xor_func>(place, "def", dims)); arena::Arena arena_xor(std::move(logical_xor_tester), place, 1); arena_xor.TestPrecision(); std::unique_ptr logical_and_tester( new LogicalXorTester<_logical_and_func>(place, "def", dims)); arena::Arena arena_and(std::move(logical_and_tester), place, 1); arena_and.TestPrecision(); } TEST(Logical, precision) { // #ifdef LITE_WITH_X86 // // Place place(TARGET(kX86)); // // #endif #ifdef LITE_WITH_ARM Place place(TARGET(kARM)); test_logical(place); #endif } } // namespace lite } // namespace paddle