// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/pool_op.h" #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { inline cnmlPoolMode_t ToCnmlPoolMode(const std::string& pool_mode) { cnmlPoolMode_t cnml_pool_mode; if (pool_mode == "max") { cnml_pool_mode = CNML_POOL_MAX; } else if (pool_mode == "avg") { cnml_pool_mode = CNML_POOL_AVG; } else { CHECK(false) << "Unexpected pool mode " << pool_mode; } return cnml_pool_mode; } int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; // Get input, and attributes auto x_var_name = op_info->Input("X").front(); auto x = scope->FindTensor(x_var_name); auto output_var_name = op_info->Output("Out").front(); auto output_shape = scope->FindTensor(output_var_name)->dims().Vectorize(); auto pooling_type = op_info->GetAttr("pooling_type"); auto ceil_mode = op_info->GetAttr("ceil_mode"); auto paddings = op_info->GetAttr>("paddings"); auto global_pooling = op_info->GetAttr("global_pooling"); auto ksize = op_info->GetAttr>("ksize"); auto strides = op_info->GetAttr>("strides"); if (paddings.size() == 2L) { for (size_t i = 0; i < 2L; ++i) { int copy_pad = *(paddings.begin() + 2 * i); paddings.insert(paddings.begin() + 2 * i + 1, copy_pad); } } int pad_height = paddings[0]; int pad_width = paddings[2]; std::string padding_algorithm(""); if (op_info->HasAttr("padding_algorithm")) { padding_algorithm = op_info->GetAttr("padding_algorithm"); } bool adaptive = false; if (op_info->HasAttr("adaptive")) { adaptive = op_info->GetAttr("adaptive"); } auto input_dims = x->dims(); if (global_pooling) { ksize.resize(static_cast(input_dims.size()) - 2); for (size_t i = 0; i < ksize.size(); ++i) { ksize[i] = static_cast(input_dims[i + 2]); } } lite::operators::UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm, x->dims(), strides, ksize); // std::vector output_shape({input_dims[0], input_dims[1]}); // for (size_t i = 0; i < 2; i++) { // output_shape.push_back( // (input_dims[i + 2] + paddings[2 * i] + paddings[2 * i + 1] - // ksize[0]) / // strides[i] + // 1); // } auto output_tensor = graph->AddNode( output_var_name, output_shape, CNML_TENSOR, CNML_NCHW, graph->FPType()); cnmlPoolOpParam_t pool_param; CNML_CALL( cnmlCreatePoolOpParam_V2(&pool_param, ksize[0], ksize[1], strides[0], strides[1], pad_height, pad_width, 1, // dilation 1, ToCnmlPoolMode(pooling_type), ceil_mode ? CNML_POOL_KVALID : CNML_POOL_KFULL, true, /* real */ 1 /* blend factor */)); cnmlBaseOp_t pool_op; CNML_CALL(cnmlCreatePoolOp(&pool_op, pool_param, graph->GetNode(x_var_name)->mlu_tensor(), output_tensor->mlu_tensor())); CNML_CALL(cnmlDestroyPoolOpParam(&pool_param)); graph->FuseOp(pool_op); CNML_CALL(cnmlDestroyBaseOp(&pool_op)); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(pool2d, kMLU, paddle::lite::subgraph::mlu::PoolConverter);