// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/cuda/tanh_compute.h" #include #include #include #include namespace paddle { namespace lite { namespace kernels { namespace cuda { TEST(tanh, fp32) { TanhCompute tanh_kernel; std::unique_ptr ctx(new KernelContext); auto& context = ctx->As(); operators::ActivationParam param; Tensor x, y, x_cpu, y_cpu; int h = 3, w = 3; y.Resize({h, w}); x_cpu.Resize({h, w}); y_cpu.Resize({h, w}); auto* y_data = y.mutable_data(TARGET(kCUDA)); float* x_cpu_data = x_cpu.mutable_data(); float* y_cpu_data = y_cpu.mutable_data(); for (int i = 0; i < x_cpu.numel(); i++) { x_cpu_data[i] = i - 1.5; } x.Assign(x_cpu_data, x_cpu.dims()); param.X = &x; param.Out = &y; tanh_kernel.SetParam(param); cudaStream_t stream; cudaStreamCreate(&stream); context.SetExecStream(stream); tanh_kernel.SetContext(std::move(ctx)); tanh_kernel.Launch(); cudaDeviceSynchronize(); CopySync( y_cpu_data, y_data, sizeof(float) * y.numel(), IoDirection::DtoH); for (int i = 0; i < y.numel(); i++) { EXPECT_NEAR(y_cpu_data[i], tanh(x_cpu_data[i]), 1e-5); } } } // namespace cuda } // namespace kernels } // namespace lite } // namespace paddle