// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/core/op_registry.h" #include "lite/kernels/cuda/tanh_compute.h" namespace paddle { namespace lite { namespace kernels { namespace cuda { template __global__ void TanhKernel(const int num, const T* input, T* output) { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index < num) { output[index] = tanh(input[index]); } } void TanhCompute::Run() { auto& param = this->Param(); auto& ctx = this->ctx_->template As(); auto stream = ctx.exec_stream(); int num = static_cast(param.X->numel()); auto input = param.X->data(); auto output = param.Out->mutable_data(TARGET(kCUDA)); const int threads = 512; const int blocks = (num + threads - 1) / threads; TanhKernel<<>>(num, input, output); cudaError_t error = cudaGetLastError(); if (error != cudaSuccess) LOG(ERROR) << cudaGetErrorString(error); } } // namespace cuda } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( tanh, kCUDA, kFloat, kNCHW, paddle::lite::kernels::cuda::TanhCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kCUDA))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA))}) .Finalize();