// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/api/light_api.h" #include #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" DEFINE_string(optimized_model, "", ""); namespace paddle { namespace lite { TEST(LightAPI, load) { if (FLAGS_optimized_model.empty()) { FLAGS_optimized_model = "lite_naive_model"; } LightPredictor predictor(FLAGS_optimized_model, "", ""); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({100, 100}))); auto* data = input_tensor->mutable_data(); for (int i = 0; i < 100 * 100; i++) { data[i] = i; } predictor.PrepareFeedFetch(); const std::vector inputs = predictor.GetInputNames(); LOG(INFO) << "input size: " << inputs.size(); for (int i = 0; i < inputs.size(); i++) { LOG(INFO) << "inputnames: " << inputs[i]; } const std::vector outputs = predictor.GetOutputNames(); for (int i = 0; i < outputs.size(); i++) { LOG(INFO) << "outputnames: " << outputs[i]; } predictor.Run(); const auto* output = predictor.GetOutput(0); const auto* output_by_name = predictor.GetOutput(outputs[0]); CHECK(output == output_by_name); const float* raw_output = output->data(); for (int i = 0; i < 10; i++) { LOG(INFO) << "out " << raw_output[i]; } } TEST(LightAPI, loadNaiveBuffer) { if (FLAGS_optimized_model.empty()) { FLAGS_optimized_model = "lite_naive_model"; } auto model_path = std::string(FLAGS_optimized_model) + "/__model__.nb"; auto params_path = std::string(FLAGS_optimized_model) + "/param.nb"; std::string model_buffer = lite::ReadFile(model_path); size_t size_model = model_buffer.length(); std::string params_buffer = lite::ReadFile(params_path); size_t size_params = params_buffer.length(); LOG(INFO) << "sizeModel: " << size_model; LOG(INFO) << "sizeParams: " << size_params; lite_api::MobileConfig config; config.set_model_buffer( model_buffer.c_str(), size_model, params_buffer.c_str(), size_params); LightPredictor predictor(config.model_dir(), config.model_buffer(), config.param_buffer(), config.model_from_memory(), lite_api::LiteModelType::kNaiveBuffer); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({100, 100}))); auto* data = input_tensor->mutable_data(); for (int i = 0; i < 100 * 100; i++) { data[i] = i; } predictor.Run(); const auto* output = predictor.GetOutput(0); const float* raw_output = output->data(); for (int i = 0; i < 10; i++) { LOG(INFO) << "out " << raw_output[i]; } } } // namespace lite } // namespace paddle