// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include "lite/core/mir/elimination/control_flow_op_unused_inputs_and_outputs_eliminate_pass.h" #include "lite/core/mir/generate_program_pass.h" #include "lite/core/mir/pass_manager.h" #include "lite/core/mir/pass_utils.h" #include "lite/core/mir/ssa_graph.h" #include "lite/core/mir/static_kernel_pick_pass.h" #include "lite/core/mir/type_target_cast_pass.h" #include "lite/core/program.h" #include "lite/core/types.h" #include "lite/model_parser/model_parser.h" namespace paddle { namespace lite { /* * lite::Optimizer optimize a program. It utilize the mir passes to analysis the * program and export an optimized program. */ // TODO(hong1986032) Support the following passes for the subblocks const std::set kSubblockUnsupportedPasses( {"memory_optimize_pass"}); class Optimizer { public: Optimizer() {} Optimizer(Program&& program, const std::vector& valid_places) { program_ = &program; valid_places_ = valid_places; CHECK(!valid_places.empty()) << "At least one valid_place should be set"; core::KernelPickFactor factor; factor.ConsiderTarget(); factor.ConsiderPrecision(); factor.ConsiderDataLayout(); Run(std::move(program), valid_places, factor, {}); } void Run(Program&& program, const std::vector& valid_places, core::KernelPickFactor kernel_pick_factor, const std::vector& passes = {}) { program_ = &program; valid_places_ = valid_places; CHECK(!valid_places.empty()) << "At least one valid_place should be set"; CHECK(graphs_.empty()) << "duplicate optimize found"; auto block_size = program.block_size(); for (size_t block_idx = 0; block_idx < block_size; ++block_idx) { std::unique_ptr graph; graph.reset(new mir::SSAGraph); graph->Build(program, valid_places, block_idx); graph->SetValidPlaces(valid_places); graphs_.emplace_back(std::move(graph)); } SpecifyKernelPickTactic(kernel_pick_factor); InitTargetTypeTransformPass(); InitControlFlowOpUnusedInputsAndOutputsEliminatePass(); if (passes.empty() || passes.size() == 1) { std::vector passes_local{ {"lite_quant_dequant_fuse_pass", // "weight_quantization_preprocess_pass", // "lite_conv_elementwise_fuse_pass", // conv-elemwise-bn "lite_conv_bn_fuse_pass", // "lite_conv_elementwise_fuse_pass", // conv-bn-elemwise "lite_conv_conv_fuse_pass", // // TODO(Superjomn) Refine the fusion related design to select fusion // kernels for devices automatically. "lite_conv_activation_fuse_pass", // "lite_var_conv_2d_activation_fuse_pass", // "lite_match_matrix_activation_fuse_pass", // "lite_fc_fuse_pass", // "lite_shuffle_channel_fuse_pass", // "lite_transpose_softmax_transpose_fuse_pass", // "lite_interpolate_fuse_pass", // "identity_scale_eliminate_pass", // "elementwise_mul_constant_eliminate_pass", // "lite_sequence_pool_concat_fuse_pass", // "lite_scale_activation_fuse_pass", // #if (defined LITE_WITH_LIGHT_WEIGHT_FRAMEWORK) || (defined LITE_WITH_CUDA) || \ (defined LITE_WITH_ARM) "lite_elementwise_activation_fuse_pass", // #endif "identity_dropout_eliminate_pass", "__xpu__resnet_fuse_pass", "__xpu__resnet_cbam_fuse_pass", "__xpu__mmdnn_fuse_pass", "__xpu__multi_encoder_fuse_pass", "__xpu__embedding_with_eltwise_add_fuse_pass", "__xpu__fc_fuse_pass", "quantized_op_attributes_inference_pass", // Only for fully // quantized model, infer // the output scale and // fix the attribute // 'enable_int8' for all // of the quantized ops. "npu_subgraph_pass", "huawei_ascend_npu_subgraph_pass", "xpu_subgraph_pass", "bm_subgraph_pass", "apu_subgraph_pass", "rknpu_subgraph_pass", "mlu_subgraph_pass", "control_flow_op_unused_inputs_and_outputs_eliminate_pass", "static_kernel_pick_pass", // pick original kernel from graph "remove_tf_redundant_ops_pass", "variable_place_inference_pass", // inference arg/var's "mlu_postprocess_pass", // info(target/precision/layout/device) // using kernel info "argument_type_display_pass", // debug pass: show arg-type-node's // info // (target/precision/layout/device) "type_target_cast_pass", // add io_copy/io_copy_once if meet // different targets when last and next // node "variable_place_inference_pass", // "argument_type_display_pass", // "io_copy_kernel_pick_pass", // "argument_type_display_pass", // "variable_place_inference_pass", // "argument_type_display_pass", // "type_precision_cast_pass", // "variable_place_inference_pass", // "argument_type_display_pass", // "type_layout_cast_pass", // add layout/layout_once op if meet // different layout when last and next node "argument_type_display_pass", // "variable_place_inference_pass", // "argument_type_display_pass", "runtime_context_assign_pass", "argument_type_display_pass", "memory_optimize_pass"}}; if (passes.size() == 1) { // multi_stream_analysis_pass must be in the front of // runtime_context_assign_pass const std::string msa_pass{"multi_stream_analysis_pass"}; const std::string depend_pass{"runtime_context_assign_pass"}; if (passes[0] == msa_pass) { auto iter = std::find(passes_local.begin(), passes_local.end(), depend_pass); if (iter != passes_local.end()) { passes_local.insert(iter, msa_pass); } else { CHECK(false) << "Not find " << depend_pass; } } else { passes_local.push_back(passes[0]); } } RunPasses(passes_local); } else { RunPasses(passes); } exec_scope_ = program.exec_scope(); } const Scope* exec_scope() const { return exec_scope_; } // Generate a new program based on the mir graph. std::unique_ptr GenRuntimeProgram() { auto pass = mir::PassManager::Global().LookUp( "generate_program_pass"); for (auto& graph : graphs_) { pass->Apply(graph); } auto program = pass->GenProgram(); CHECK(exec_scope_); program->set_exec_scope(exec_scope_); return program; } void InitTargetTypeTransformPass() { auto* pass = mir::PassManager::Global().LookUp( "type_target_cast_pass"); CHECK(pass); CHECK(!valid_places_.empty()); pass->SetValidPlaces(valid_places_); } void InitControlFlowOpUnusedInputsAndOutputsEliminatePass() { auto* pass = mir::PassManager::Global() .LookUp( "control_flow_op_unused_inputs_and_outputs_eliminate_pass"); CHECK(pass); CHECK(!graphs_.empty()); pass->SetAllGraphs(&graphs_); } // Generate C++ code which combines the inference program, model and weights. void GenCode(const std::string& code_dir); const mir::SSAGraph& ssa_graph(int block_idx = kRootBlockIdx) const { CHECK(!graphs_.empty()); CHECK(graphs_[block_idx]); return *graphs_[block_idx]; } mir::SSAGraph* mutable_ssa_graph(int block_idx = kRootBlockIdx) { CHECK(!graphs_.empty()); CHECK(graphs_[block_idx]); return graphs_[block_idx].get(); } Scope* exec_scope() { return exec_scope_; } protected: void SpecifyKernelPickTactic(core::KernelPickFactor factor); // Specify the passes and run them. void RunPasses(const std::vector& passes) { for (auto& x : passes) { LOG(INFO) << "== Running pass: " << x; mir::Pass* pass = mir::PassManager::Global().LookUp(x); if (!pass) { LOG(INFO) << " - Skip " << x << " because the pass isn't found."; continue; } std::set targets; for (const auto& place : valid_places_) { targets.insert(place.target); } bool matched = PassMatchesTarget(*pass, targets) && PassMatchesKernels(*pass); if (!matched) { LOG(INFO) << " - Skip " << x << " because the target or kernel does not match."; } else { // Check the pass whether it is supported for processing subblocks if (kSubblockUnsupportedPasses.count(x)) { pass->Apply(graphs_[kRootBlockIdx]); } else { for (auto& graph : graphs_) { pass->Apply(graph); } } LOG(INFO) << "== Finished running: " << x; } } } private: std::vector> graphs_; std::vector valid_places_; Scope* exec_scope_{}; Program* program_{}; }; } // namespace lite } // namespace paddle