// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/backends/opencl/target_wrapper.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" #include "lite/kernels/opencl/test_helper.h" #define FP16_MAX_DIFF (5e-1) namespace paddle { namespace lite { void dropout(const float* input_data, const DDim& in_dim, float* output_data, const float prob) { for (int i = 0; i < in_dim.production(); i++) { output_data[i] = input_data[i] * (1 - prob); } } TEST(dropout_image2d_fp16, compute) { LOG(INFO) << "to get kernel ..."; auto kernels = KernelRegistry::Global().Create( "dropout", TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault)); ASSERT_FALSE(kernels.empty()); auto kernel = std::move(kernels.front()); LOG(INFO) << "get kernel:" << kernel->doc(); lite::Tensor x, out; operators::DropoutParam param; param.x = &x; param.output = &out; param.dropout_prob = 0.6; std::unique_ptr context(new KernelContext); context->As().InitOnce(); kernel->SetParam(param); std::unique_ptr dropout_context(new KernelContext); context->As().CopySharedTo( &(dropout_context->As())); kernel->SetContext(std::move(dropout_context)); const DDim in_dim = DDim(std::vector{4, 11, 107, 107}); const DDim out_dim = DDim(std::vector{4, 11, 107, 107}); x.Resize(in_dim); out.Resize(out_dim); std::default_random_engine engine; std::uniform_real_distribution dist(-5, 5); std::vector input_v(4 * 11 * 107 * 107); for (auto& i : input_v) { i = dist(engine); } LOG(INFO) << "prepare input"; CLImageConverterDefault* default_converter = new CLImageConverterDefault(); DDim image_shape = default_converter->InitImageDimInfoWith(in_dim); LOG(INFO) << "image_shape = " << image_shape[0] << " " << image_shape[1]; std::vector x_image_data(image_shape.production() * 4); // 4 : RGBA default_converter->NCHWToImage(input_v.data(), x_image_data.data(), in_dim); auto* x_image = x.mutable_data( image_shape[0], image_shape[1], x_image_data.data()); LOG(INFO) << "x_image:" << x_image; auto* out_image = out.mutable_data(image_shape[0], image_shape[1]); LOG(INFO) << "out_image:" << out_image; kernel->Launch(); auto* wait_list = context->As().cl_wait_list(); auto* out_ptr = param.output->data(); auto it = wait_list->find(out_ptr); if (it != wait_list->end()) { VLOG(4) << "--- Find the sync event for the target cl tensor. ---"; auto& event = *(it->second); event.wait(); } else { LOG(FATAL) << "Could not find the sync event for the target cl tensor."; } std::unique_ptr out_ref(new float[out_dim.production()]); dropout(input_v.data(), in_dim, out_ref.get(), 0.6); const size_t cl_image2d_row_pitch{0}; const size_t cl_image2d_slice_pitch{0}; half_t* out_image_data = new half_t[image_shape.production() * 4]; TargetWrapperCL::ImgcpySync(out_image_data, out_image, image_shape[0], image_shape[1], cl_image2d_row_pitch, cl_image2d_slice_pitch, IoDirection::DtoH); float* out_data = new float[image_shape.production() * 4]; default_converter->ImageToNCHW( out_image_data, out_data, image_shape, out_dim); for (int i = 0; i < out_dim.production(); i++) { auto abs_diff = abs(out_data[i] - out_ref[i]); auto relative_diff = COMPUTE_RELATIVE_DIFF(out_data[i], out_ref[i]); EXPECT_EQ((relative_diff <= FP16_MAX_DIFF) || (abs_diff <= FP16_MAX_DIFF), true); if ((relative_diff > FP16_MAX_DIFF) && (abs_diff > FP16_MAX_DIFF)) { LOG(ERROR) << "error idx:" << i << " out_data[" << i << "]:" << out_data[i] << " " "out_ref[" << i << "]:" << out_ref[i] << " abs_diff:" << abs_diff << " relative_diff:" << relative_diff << " FP16_MAX_DIFF:" << FP16_MAX_DIFF; } } } } // namespace lite } // namespace paddle USE_LITE_KERNEL(dropout, kOpenCL, kFP16, kImageDefault, image2d);