// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/split_op.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace operators { bool SplitOp::CheckShape() const { CHECK_OR_FALSE(param_.x); CHECK_GT_OR_FALSE(param_.output.size(), 1UL); auto x_dims = param_.x->dims(); auto x_rank = x_dims.size(); CHECK_OR_FALSE(param_.axis >= -static_cast(x_rank) && param_.axis < static_cast(x_rank)); return true; } bool SplitOp::InferShapeImpl() const { const auto &outs = param_.output; auto in_dims = param_.x->dims(); int axis = param_.axis; int num = param_.num; const auto §ions = param_.sections; const int outs_number = outs.size(); std::vector outs_dims; outs_dims.reserve(outs_number); std::vector sections_tensor_list_ = param_.sections_tensor_list; if (sections.size() > 0 && sections_tensor_list_.size() > 0) { std::vector vec_sections; for (size_t i = 0; i < sections_tensor_list_.size(); ++i) { auto dim = in_dims; dim[axis] = sections_tensor_list_[i]->data()[0]; outs_dims.push_back(dim); } } else if (num > 0) { int out_axis_dim = in_dims[axis] / num; for (int i = 0; i < outs_number; ++i) { auto dim = in_dims; dim[axis] = out_axis_dim; outs_dims.push_back(dim); } } else if (sections.size() > 0) { for (int i = 0; i < outs_number; ++i) { auto dim = in_dims; dim[axis] = sections[i]; outs_dims.push_back(dim); } } if (param_.axis_tensor != nullptr) { axis = param_.axis_tensor->data()[0]; } for (size_t j = 0; j < outs_dims.size(); ++j) { outs[j]->Resize(outs_dims[j]); } return true; } bool SplitOp::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) { param_.axis = opdesc.GetAttr("axis"); param_.num = opdesc.GetAttr("num"); param_.sections = opdesc.GetAttr>("sections"); auto input = opdesc.Input("X").front(); auto outs = opdesc.Output("Out"); param_.x = scope->FindVar(input)->GetMutable(); param_.output.clear(); for (auto var : outs) { param_.output.push_back(scope->FindVar(var)->GetMutable()); } std::vector input_arg_names = opdesc.InputArgumentNames(); if (std::find(input_arg_names.begin(), input_arg_names.end(), "AxisTensor") != input_arg_names.end()) { auto args = opdesc.Input("AxisTensor"); if (!args.empty()) { auto *var = scope->FindVar(args.front()); param_.axis_tensor = var->GetMutable(); } } if (std::find(input_arg_names.begin(), input_arg_names.end(), "SectionsTensorList") != input_arg_names.end()) { auto args = opdesc.Input("SectionsTensorList"); if (!args.empty()) { auto *var = scope->FindVar(args.front()); param_.sections_tensor_list = *(var->GetMutable>()); } } return true; } } // namespace operators } // namespace lite } // namespace paddle REGISTER_LITE_OP(split, paddle::lite::operators::SplitOp);