// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/rknpu/subgraph_compute.h" #include #include #include #include "lite/backends/rknpu/device.h" #include "lite/core/op_registry.h" #include "lite/kernels/rknpu/bridges/graph.h" #include "lite/kernels/rknpu/bridges/paddle_use_bridges.h" #include "lite/kernels/rknpu/bridges/utility.h" #include "rknpu/rknpu_pub.h" // NOLINT namespace paddle { namespace lite { namespace kernels { namespace rknpu { int SubgraphEngine::BuildDeviceProgram() { LOG(INFO) << "[RKNPU]:BuildDeviceProgram"; int status = 0; // Convert all of ops and their input vars and weights and added into the NPU // RKNPU IR graph subgraph::rknpu::Graph graph; const auto& bridges = subgraph::Registry::Instance(); for (auto& inst : origin_program_) { auto op = const_cast(inst.op()); CHECK(op); op->CheckShape(); op->InferShape(); std::string op_type = op->op_info()->Type(); if (!bridges.Exists(op_type, TARGET(kRKNPU))) { return subgraph::FAILED; } auto kernel = inst.kernel(); status |= bridges.Select(op_type, TARGET(kRKNPU))( reinterpret_cast(&graph), op, const_cast(kernel)); if (subgraph::CHECK_FAILED(status)) { return subgraph::FAILED; } } // Collect the valid input and output nodes in the RKNPU IR graph and update // the input and output names device_inames_.clear(); device_onames_.clear(); for (auto& input_name : input_names_) { LOG(INFO) << "[RKNPU] Input node " << input_name; if (graph.Has(input_name)) { LOG(INFO) << input_name << " Precision " << PrecisionToStr(graph.Get(input_name)->precision()); device_itensors_.push_back(graph.Get(input_name)->data()); device_inames_.push_back(input_name); } else { LOG(WARNING) << "[RKNPU] Input node " << input_name << " is ignored because it does not exist."; } } for (auto& output_name : output_names_) { LOG(INFO) << "[RKNPU] Output node " << output_name; if (graph.Has(output_name)) { auto tensor = scope_->FindMutableTensor(output_name); LOG(INFO) << output_name << " Precision " << PrecisionToStr(tensor->precision()); device_otensors_.push_back(graph.Get(output_name)->data()); device_onames_.push_back(output_name); } else { LOG(WARNING) << "[RKNPU] Output node " << output_name << " is ignored because it does not exist."; } } CHECK(!device_inames_.empty()) << "[RKNPU] No input nodes found for building NPU model"; CHECK(!device_onames_.empty()) << "[RKNPU] No output nodes found for building NPU model"; device_program_ = lite::rknpu::Device::Global().Build( model_name_, graph.GetHandle(), device_itensors_, device_otensors_); if (device_program_ == nullptr) { LOG(WARNING) << "[RKNPU] Build model failed!"; return subgraph::FAILED; } // input origin_idims_.resize(input_names_.size()); origin_itensors_.resize(input_names_.size()); for (size_t i = 0; i < input_names_.size(); i++) { origin_itensors_[i] = scope_->FindMutableTensor(input_names_[i]); CHECK(origin_itensors_[i]); origin_idims_[i] = origin_itensors_[i]->dims(); } // output origin_odims_.resize(output_names_.size()); origin_otensors_.resize(output_names_.size()); for (size_t i = 0; i < output_names_.size(); i++) { origin_otensors_[i] = scope_->FindMutableTensor(output_names_[i]); CHECK(origin_otensors_[i]); origin_odims_[i] = origin_otensors_[i]->dims(); auto output_dims = origin_otensors_[i]->dims(); } origin_idims_.resize(device_inames_.size()); origin_itensors_.resize(device_inames_.size()); device_itensors_.resize(device_inames_.size()); origin_odims_.resize(device_onames_.size()); origin_otensors_.resize(device_onames_.size()); device_otensors_.resize(device_onames_.size()); for (int i = 0; i < device_inames_.size(); i++) { auto node = graph.Get(device_inames_[i]); auto precision = node->precision(); auto layout = node->layout(); origin_itensors_[i] = scope_->FindMutableTensor(device_inames_[i]); CHECK(origin_itensors_[i]); origin_idims_[i] = origin_itensors_[i]->dims(); LOG(INFO) << "[RKNPU] Inputs[" << i << "] name: " << device_inames_[i] << " precision: " << PrecisionToStr(precision) << " layout: " << DataLayoutToStr(layout); } for (int i = 0; i < device_onames_.size(); i++) { auto node = graph.Get(device_onames_[i]); auto precision = node->precision(); auto layout = node->layout(); origin_otensors_[i] = scope_->FindMutableTensor(device_onames_[i]); CHECK(origin_otensors_[i]); origin_odims_[i] = origin_otensors_[i]->dims(); LOG(INFO) << "[RKNPU] Outputs[" << i << "] name: " << device_onames_[i] << " precision: " << PrecisionToStr(precision) << " layout: " << DataLayoutToStr(layout); // Prepare the device output tensors switch (precision) { case PRECISION(kFloat): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt8): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt16): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt32): origin_otensors_[i]->mutable_data(); break; case PRECISION(kInt64): origin_otensors_[i]->mutable_data(); break; default: LOG(FATAL) << "[RKNPU] " << device_onames_[i] << " can't mutable data with precision type " << PrecisionToStr(precision); break; } } return status; } int SubgraphEngine::LaunchDeviceProgram() { LOG(INFO) << "[RKNPU]:LaunchDeviceProgram"; std::vector inputs; std::vector outputs; inputs.resize(device_itensors_.size()); for (size_t i = 0; i < device_itensors_.size(); i++) { inputs[i].index = i; inputs[i].buf = const_cast(origin_itensors_[i]->raw_data()); inputs[i].size = origin_itensors_[i]->memory_size(); inputs[i].pass_through = false; inputs[i].type = subgraph::rknpu::ToRknpuPrecisionType(origin_itensors_[i]->precision()); inputs[i].layout = rk::nn::DataLayoutType::NCHW; } outputs.resize(device_otensors_.size()); for (size_t i = 0; i < device_otensors_.size(); i++) { outputs[i].index = i; outputs[i].buf = const_cast(origin_otensors_[i]->raw_data()); outputs[i].size = origin_otensors_[i]->memory_size(); outputs[i].want_float = false; } device_program_->SetInputs(inputs); device_program_->Run(); device_program_->GetOutputs(outputs); return 0; } void SubgraphCompute::PrepareForRun() { LOG(INFO) << "[RKNPU]:PrepareForRun"; auto& param = this->Param(); engine_.reset(new SubgraphEngine(ctx_.get(), param.sub_block_idx, param.sub_block_desc, param.input_data_names, param.output_data_names, param.scope)); CHECK(engine_); engine_->Build(); } void SubgraphCompute::Run() { LOG(INFO) << "[RKNPU]:Run"; CHECK(engine_); engine_->Launch(); } } // namespace rknpu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(subgraph, kRKNPU, kInt8, kNCHW, paddle::lite::kernels::rknpu::SubgraphCompute, def) .BindInput("Inputs", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kInt8), DATALAYOUT(kNCHW))}) .BindOutput("Outputs", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kInt8), DATALAYOUT(kNCHW))}) .Finalize();