// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/pool_op.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/rknpu/bridges/graph.h" #include "lite/kernels/rknpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace rknpu { int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[RKNPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto out_name = op_info->Output("Out").front(); auto output = scope->FindMutableTensor(out_name); auto pooling_type = op_info->GetAttr("pooling_type"); auto global_pooling = op_info->GetAttr("global_pooling"); auto ksize = op_info->GetAttr>("ksize"); auto paddings = op_info->GetAttr>("paddings"); // for quantization bool enable_int8 = false; float input_scale = 1.0; float output_scale = 1.0; int bit_length = 8; DataLayoutType layout = DATALAYOUT(kNCHW); PrecisionType precision = PRECISION(kFloat); if (x->precision() == PRECISION(kInt8)) { // enable_int8 = op_info->GetAttr("enable_int8"); enable_int8 = true; input_scale = op_info->GetAttr("input_scale"); bit_length = op_info->GetAttr("bit_length"); output_scale = op_info->GetAttr("output_scale"); if (enable_int8) { precision = PRECISION(kInt8); LOG(WARNING) << "[RKNPU] Pooling int8"; } } // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { QuantizationInfo qnt; qnt.enable_int8 = enable_int8; if (enable_int8) { qnt.scale.push_back(input_scale); qnt.quant_bits = bit_length; } x_node = graph->Add(x_name, *x, x->precision(), layout, qnt); } // pool mode rk::nn::PoolType mode = rk::nn::PoolType::POOLING_UNKNOWN; if (pooling_type == "max") { mode = rk::nn::PoolType::POOLING_MAX; } else if (pooling_type == "avg") { mode = rk::nn::PoolType::POOLING_AVG; } else { LOG(WARNING) << "[RKNPU] Unsupported pooling type: " << pooling_type; return FAILED; } // pad mode rk::nn::PadType pad_mode = rk::nn::PadType::AUTO; std::string padding_algorithm(""); if (op_info->HasAttr("padding_algorithm")) { padding_algorithm = op_info->GetAttr("padding_algorithm"); } if (padding_algorithm == "SAME") { pad_mode = rk::nn::PadType::SAME; } else if (padding_algorithm == "VALID") { pad_mode = rk::nn::PadType::VALID; } // paddings and strides if (paddings.size() == 2L) { for (size_t i = 0; i < 2L; ++i) { int copy_pad = *(paddings.begin() + 2 * i); paddings.insert(paddings.begin() + 2 * i + 1, copy_pad); } } CHECK_EQ(paddings.size(), 4L) << "[NPU] Paddings size should be the same or twice as the inputs size."; bool adaptive = false; if (op_info->HasAttr("adaptive")) { adaptive = op_info->GetAttr("adaptive"); } auto strides = op_info->GetAttr>("strides"); lite::operators::UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm, x->dims(), strides, ksize); // ceil mode int ceil_mode = 0; if (op_info->HasAttr("ceil_mode")) { ceil_mode = op_info->GetAttr("ceil_mode") ? 1 : 0; } std::shared_ptr output_node = nullptr; QuantizationInfo output_qnt; output_qnt.enable_int8 = enable_int8; if (enable_int8) { output_qnt.quant_bits = bit_length; output_qnt.scale.push_back(output_scale); output->mutable_data(); } output_node = graph->Add(out_name, *output, precision, layout, output_qnt); std::vector> inputs; std::vector> outputs; inputs.push_back(x_node->data()); outputs.push_back(output_node->data()); rk::nn::PoolAttr attrs; attrs.ksize[0] = ksize[0]; attrs.ksize[1] = ksize[1]; attrs.stride[0] = strides[0]; attrs.stride[1] = strides[1]; attrs.pad[0] = paddings[0]; attrs.pad[1] = paddings[1]; attrs.pad[2] = paddings[2]; attrs.pad[3] = paddings[3]; attrs.pad_type = pad_mode; attrs.pool_type = mode; attrs.global_pooling = global_pooling; if (ceil_mode) { attrs.round_type = rk::nn::RoundType::ROUND_CEIL; } else { attrs.round_type = rk::nn::RoundType::ROUND_FLOOR; } auto rGraph = graph->GetHandle(); auto pool = rGraph->AddOperator(rk::nn::OperatorType::POOL, inputs, outputs, &attrs); return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace rknpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(pool2d, kRKNPU, paddle::lite::subgraph::rknpu::PoolConverter);