// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/rknpu/bridges/graph.h" // #include "lite/kernels/npu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace rknpu { int ActConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto scope = op->scope(); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto x_var_name = op_info->Input("X").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto x_dims = x->dims(); auto output_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(output_var_name)->GetMutable(); auto output_dims = output->dims(); const int64_t* x_shape_data = const_cast(&x_dims.data()[0]); const int64_t* output_shape_data = const_cast(&output_dims.data()[0]); std::vector i_x_shape_data(x_dims.size()); std::vector i_output_shape_data(output_dims.size()); VLOG(3) << "[RKNPU] Converting " + op_type + "..."; auto x_type = kernel->GetInputDeclType("X"); CHECK(x_type->precision() == PRECISION(kFloat)); CHECK(x_type->layout() == DATALAYOUT(kNCHW)); auto out_type = kernel->GetOutputDeclType("Out"); CHECK(out_type->precision() == PRECISION(kFloat)); CHECK(out_type->layout() == DATALAYOUT(kNCHW)); for (size_t i = 0; i < x_dims.size(); i++) { i_x_shape_data[i] = static_cast(x_shape_data[i]); } for (size_t i = 0; i < output_dims.size(); i++) { i_output_shape_data[i] = static_cast(output_shape_data[i]); } CHECK_EQ(op_type, "relu"); // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_var_name)) { x_node = graph->Get(x_var_name); } else { x_node = graph->Add(x_var_name, *x, x_type->precision(), x_type->layout()); } auto output_node = graph->Add( output_var_name, *output, out_type->precision(), out_type->layout()); auto rGraph = graph->GetHandle(); std::vector> inputs; std::vector> outputs; inputs.push_back(x_node->data()); outputs.push_back(output_node->data()); auto relu = rGraph->AddOperator(rk::nn::OperatorType::RELU, inputs, outputs, nullptr); return SUCCESS; } } // namespace rknpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(relu, kRKNPU, paddle::lite::subgraph::rknpu::ActConverter);