// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/backends/opencl/cl_half.h" #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" #include "lite/utils/string.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class ScaleComputeImage2D : public KernelLite { public: using param_t = operators::ScaleParam; std::string doc() const override { return "Scale using cl::Image2D, kFP16"; } void PrepareForRun() override { auto& context = ctx_->As(); context.cl_context()->AddKernel(kernel_func_name_, "image/scale_kernel.cl", build_options_, time_stamp_); VLOG(1) << "kernel_func_name_:" << kernel_func_name_; STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_ << time_stamp_; kernel_ = context.cl_context()->GetKernel(kernel_key.str()); } void ReInitWhenNeeded() override { scale_param_ = param_.get_mutable(); auto x_dims = scale_param_->x->dims(); if ((!first_epoch_for_reinit_ && x_dims != last_x_dims_) || first_epoch_for_reinit_) { last_x_dims_ = x_dims; first_epoch_for_reinit_ = false; // compute image shape paddle::lite::CLImageConverterDefault default_convertor; out_img_shape_ = default_convertor.InitImageDimInfoWith(scale_param_->output->dims()); // compute global work size GetGlobalWorkSize(); } } void GetGlobalWorkSize() { global_work_size_ = cl::NDRange{static_cast(out_img_shape_[0]), static_cast(out_img_shape_[1])}; } void Run() override { auto* x_img = scale_param_->x->data(); auto* out_img = scale_param_->output->mutable_data( out_img_shape_[0], out_img_shape_[1]); const float scale = scale_param_->scale; const float bias = scale_param_->bias; auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto kernel = kernel_; cl_int status; status = kernel.setArg(0, *x_img); CL_CHECK_FATAL(status); status = kernel.setArg(1, *out_img); CL_CHECK_FATAL(status); status = kernel.setArg(2, scale); CL_CHECK_FATAL(status); status = kernel.setArg(3, bias); CL_CHECK_FATAL(status); event_ = std::shared_ptr(new cl::Event); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size_, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_img, event_); } private: std::string kernel_func_name_{"scale"}; std::string build_options_{"-DCL_DTYPE_half"}; std::string time_stamp_{GetTimeStamp()}; std::shared_ptr event_{nullptr}; param_t* scale_param_{nullptr}; cl::Kernel kernel_; bool first_epoch_for_reinit_{true}; DDim last_x_dims_; DDim out_img_shape_ = DDim(std::vector( {static_cast(1), static_cast(1)})); cl::NDRange global_work_size_ = cl::NDRange{ static_cast(1), static_cast(1), static_cast(1)}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(scale, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::ScaleComputeImage2D, image2d) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize();