// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/fc_op.h" #include #include "lite/core/op_lite.h" #include "lite/core/op_registry.h" #include "lite/kernels/mlu/bridges/test_helper.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { void fc_ref(const std::shared_ptr op) { Scope* scope = op->scope(); const OpInfo* op_info = op->op_info(); auto input = scope->FindVar(op_info->Input("Input").front())->GetMutable(); auto w = scope->FindVar(op_info->Input("W").front())->GetMutable(); auto out = scope->FindVar(op_info->Output("Out").front())->GetMutable(); int32_t in_num_col_dims = op_info->GetAttr("in_num_col_dims"); Tensor* bias = nullptr; float* bias_data = nullptr; if (op_info->HasInput("Bias")) { auto bias_var_names = op_info->Input("Bias"); if (bias_var_names.size() > 0) { auto bias_var_name = bias_var_names.front(); bias = scope->FindVar(bias_var_name)->GetMutable(); bias_data = bias->mutable_data(); } } auto input_data = input->data(); auto w_data = w->mutable_data(); auto out_data = out->mutable_data(); auto in_mat_dims = input->dims().Flatten2D(in_num_col_dims); int out_num_classes = w->dims()[1]; const int M = in_mat_dims[0]; const int K = in_mat_dims[1]; const int N = out_num_classes; for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { out_data[m * N + n] = 0; for (int k = 0; k < K; ++k) { out_data[m * N + n] += input_data[m * K + k] * w_data[k * N + n]; } } } if (bias_data != nullptr) { for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { out_data[m * N + n] += bias_data[n]; } } } } void test_fc(const std::vector& input_shape, const std::vector& w_shape, int in_num_col_dims, bool has_bias) { CHECK_EQ(w_shape.size(), 2UL); Scope scope; std::string input_var_name("Input"); std::string w_var_name("W"); std::string w_int_var_name("W_int"); std::string bias_var_name("Bias"); std::string out_var_name("Out"); std::string out_ref_var_name("out_ref"); auto* input = scope.Var(input_var_name)->GetMutable(); auto* w = scope.Var(w_var_name)->GetMutable(); auto* w_int = scope.Var(w_int_var_name)->GetMutable(); auto* out = scope.Var(out_var_name)->GetMutable(); auto* out_ref = scope.Var(out_ref_var_name)->GetMutable(); input->Resize(input_shape); w->Resize(w_shape); w_int->Resize(w_shape); FillTensor(w_int, -127, 127); float w_scale = 1. / 1024; float input_scale = 1. / 8; Tensor input_int; input_int.Resize(input_shape); FillTensor(&input_int, -127, 127); for (size_t i = 0; i < input->data_size(); i++) { input->mutable_data()[i] = input_int.data()[i] * input_scale; } for (size_t i = 0; i < w->data_size(); i++) { w->mutable_data()[i] = w_int->data()[i] * w_scale; } // create fc op cpp::OpDesc fc_op_desc; fc_op_desc.SetType("fc"); fc_op_desc.SetInput("Input", {input_var_name}); fc_op_desc.SetInput("W", {w_var_name}); fc_op_desc.SetOutput("Out", {out_var_name}); fc_op_desc.SetAttr("in_num_col_dims", static_cast(in_num_col_dims)); if (has_bias) { auto* bias = scope.Var(bias_var_name)->GetMutable(); bias->Resize({w_shape[1]}); FillTensor(bias); fc_op_desc.SetInput("Bias", {bias_var_name}); } auto fc_op = CreateOp(fc_op_desc, &scope); fc_ref(fc_op); out_ref->CopyDataFrom(*out); // create fc imlu op cpp::OpDesc fc_op_desc_mlu; fc_op_desc_mlu.SetType("fc"); fc_op_desc_mlu.SetInput("Input", {input_var_name}); fc_op_desc_mlu.SetInput("W", {w_int_var_name}); fc_op_desc_mlu.SetOutput("Out", {out_var_name}); fc_op_desc_mlu.SetAttr("in_num_col_dims", static_cast(in_num_col_dims)); fc_op_desc_mlu.SetAttr("weight_scale", std::vector(w_shape[1], w_scale)); fc_op_desc_mlu.SetAttr("input_scale", input_scale); if (has_bias) { fc_op_desc_mlu.SetInput("Bias", {bias_var_name}); } auto fc_op_mlu = CreateOp(fc_op_desc_mlu, &scope); Tensor input_tmp, out_tmp; input_tmp.Resize(input_shape); transpose(input->mutable_data(), input_tmp.mutable_data(), {static_cast(input_shape[0]), static_cast(input_shape[1]), static_cast(input_shape[2]), static_cast(input_shape[3])}, {0, 2, 3, 1}); input->CopyDataFrom(input_tmp); LaunchOp(fc_op_mlu, {input_var_name}, {out_var_name}); auto os = out->dims(); out_tmp.Resize(os); auto* out_data = out->mutable_data(); // transpose(out_data, // out_tmp.mutable_data(), // {static_cast(os[0]), // static_cast(os[2]), // static_cast(os[3]), // static_cast(os[1])}, // {0, 3, 1, 2}); // // out_data = out_tmp.mutable_data(); // compare results auto* out_ref_data = out_ref->mutable_data(); for (int i = 0; i < out->dims().production(); i++) { EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-5); } } TEST(MLUBridges, fc) { for (bool use_bias : {true, false}) { // test_fc({1, 8, 8, 1}, {64, 4}, 1, use_bias); // test_fc({1, 5, 5, 1}, {25, 7}, 1, use_bias); // test_fc({1, 4, 1, 1}, {4, 8}, 1, use_bias); test_fc({1, 1024, 1, 1}, {1024, 32}, 1, use_bias); } } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle USE_SUBGRAPH_BRIDGE(fc, kMLU);