// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/core/op_lite.h" #include "lite/core/op_registry.h" #include "lite/kernels/mlu/bridges/test_helper.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/operators/activation_ops.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { template void FillTensor(Tensor* x, float lower = -2, float upper = -2); void act_ref(const std::shared_ptr op) { Scope* scope = op->scope(); const OpInfo* op_info = op->op_info(); auto op_type = op_info->Type(); auto x = scope->FindTensor("x"); auto out = scope->FindMutableTensor("out"); auto out_ref = scope->FindMutableTensor("out_ref"); out->Resize(x->dims()); out_ref->Resize(x->dims()); auto x_data = x->data(); auto out_data = out->mutable_data(); CHECK_EQ(x->numel(), out->numel()); // "sigmoid","relu","tanh","relu_clipped","leaky_relu","softsign","hard_sigmoid" if (op_type == "sigmoid") { for (int i = 0; i < out->numel(); i++) { out_data[i] = 1.f / (1.f + std::exp(-x_data[i])); } } else if (op_type == "relu") { for (int i = 0; i < out->numel(); i++) { out_data[i] = std::max(0.f, x_data[i]); } } else if (op_type == "tanh") { for (int i = 0; i < out->numel(); i++) { out_data[i] = (std::exp(x_data[i]) - std::exp(-x_data[i])) / (std::exp(x_data[i]) + std::exp(-x_data[i])); } } else if (op_type == "relu_clipped") { auto relu_clipped_coef = op_info->GetAttr("Relu_clipped_coef"); for (int i = 0; i < out->numel(); i++) { out_data[i] = std::min(std::max(0.f, x_data[i]), relu_clipped_coef); } } else if (op_type == "relu6") { for (int i = 0; i < out->numel(); i++) { out_data[i] = std::min(std::max(0.f, x_data[i]), 6.f); } } else if (op_type == "leaky_relu") { auto alpha = op_info->GetAttr("alpha"); for (int i = 0; i < out->numel(); i++) { out_data[i] = std::max(x_data[i], x_data[i] * alpha); } } else if (op_type == "softsign") { for (int i = 0; i < out->numel(); i++) { out_data[i] = x_data[i] / (1 + std::abs(x_data[i])); } } else if (op_type == "hard_sigmoid") { auto slope = op_info->GetAttr("slope"); auto offset = op_info->GetAttr("offset"); for (int i = 0; i < out->numel(); i++) { out_data[i] = std::min(1.f, slope * x_data[i] + offset); out_data[i] = std::max(0.f, out_data[i]); } } else { LOG(FATAL) << "unsupported activation type: " << op_type; } } void test_act(std::vector x_shape, std::string op_type) { // prepare input&output variables Scope scope; std::string x_var_name("x"); std::string out_var_name("out"); std::string out_ref_var_name("out_ref"); auto* x = scope.NewTensor(x_var_name); auto* out = scope.NewTensor(out_var_name); auto* out_ref = scope.NewTensor(out_ref_var_name); x->Resize(x_shape); // initialize input&output data FillTensor(x, 2, 8); // initialize op desc cpp::OpDesc opdesc; opdesc.SetType(op_type); opdesc.SetInput("X", {x_var_name}); opdesc.SetOutput("Out", {out_var_name}); if (op_type == "relu_clipped") { opdesc.SetAttr("Relu_clipped_coef", 3.f); } else if (op_type == "relu6") { opdesc.SetAttr("Relu_clipped_coef", 6.f); } else if (op_type == "leaky_relu") { opdesc.SetAttr("alpha", 0.02f); } else if (op_type == "hard_sigmoid") { opdesc.SetAttr("slope", 0.2f); opdesc.SetAttr("offset", 0.5f); } // create and convert op to NPU model, then run it on NPU auto op = CreateOp(opdesc, &scope); // execute reference implementation and save to output tensor act_ref(op); out_ref->CopyDataFrom(*out); LaunchOp(op, {x_var_name}, {out_var_name}); // compare results auto* out_data = out->mutable_data(); auto* out_ref_data = out_ref->mutable_data(); for (int i = 0; i < out->dims().production(); i++) { EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2); } } TEST(MLUBridges, activation) { std::vector> shapes{{1}, {2, 3}, {1, 2, 3, 4}}; std::vector types{"sigmoid", "relu", "tanh", "leaky_relu"}; for (auto x_shape : shapes) { for (auto op_type : types) { test_act(x_shape, op_type); } } } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle USE_SUBGRAPH_BRIDGE(sigmoid, kMLU) USE_SUBGRAPH_BRIDGE(relu, kMLU) USE_SUBGRAPH_BRIDGE(tanh, kMLU) USE_SUBGRAPH_BRIDGE(leaky_relu, kMLU)