// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "lite/api/cxx_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/core/op_registry.h" DEFINE_string(input_img_txt_path, "", "if set input_img_txt_path, read the img filename as input."); namespace paddle { namespace lite { void TestModel(const std::vector& valid_places) { //DeviceInfo::Init(); //DeviceInfo::Global().SetRunMode(lite_api::LITE_POWER_NO_BIND, FLAGS_threads); lite::Predictor predictor; predictor.Build(FLAGS_model_dir, "", "", valid_places); #if 0 auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({1, 3, 224, 224}))); auto* data = input_tensor->mutable_data(); auto item_size = input_tensor->dims().production(); if (FLAGS_input_img_txt_path.empty()) { for (int i = 0; i < item_size; i++) { data[i] = 1; } } else { std::fstream fs(FLAGS_input_img_txt_path, std::ios::in); if (!fs.is_open()) { LOG(FATAL) << "open input_img_txt error."; } for (int i = 0; i < item_size; i++) { fs >> data[i]; } } for (int i = 0; i < FLAGS_warmup; ++i) { predictor.Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor.Run(); } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; std::vector> results; // i = 1 // ground truth result from fluid results.emplace_back(std::vector( {0.0002451055, 0.0002585023, 0.0002659616, 0.0002823})); auto* out = predictor.GetOutput(0); ASSERT_EQ(out->dims().size(), 2); ASSERT_EQ(out->dims()[0], 1); ASSERT_EQ(out->dims()[1], 1000); int step = 50; for (int i = 0; i < results.size(); ++i) { for (int j = 0; j < results[i].size(); ++j) { EXPECT_NEAR(out->data()[j * step + (out->dims()[1] * i)], results[i][j], 1e-6); } } auto* out_data = out->data(); LOG(INFO) << "output data:"; for (int i = 0; i < out->numel(); i += step) { LOG(INFO) << out_data[i]; } float max_val = out_data[0]; int max_val_arg = 0; for (int i = 1; i < out->numel(); i++) { if (max_val < out_data[i]) { max_val = out_data[i]; max_val_arg = i; } } LOG(INFO) << "max val:" << max_val << ", max_val_arg:" << max_val_arg; #endif } TEST(ResNet50, test_bm) { std::vector valid_places({ Place{TARGET(kBM), PRECISION(kFloat)} }); TestModel(valid_places); } } // namespace lite } // namespace paddle