// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/api/cxx_api.h" #include #include #include #include #include "lite/utils/io.h" #ifdef LITE_WITH_NPU #include "lite/npu/npu_helper.h" #endif namespace paddle { namespace lite { void Predictor::SaveModel(const std::string &dir, lite_api::LiteModelType model_type) { if (!program_) { GenRuntimeProgram(); } program_->SaveOpInfosToProgram(&program_desc_); switch (model_type) { case lite_api::LiteModelType::kProtobuf: SaveModelPb(dir, *program_->exec_scope(), program_desc_); break; case lite_api::LiteModelType::kNaiveBuffer: SaveModelNaive(dir, *program_->exec_scope(), program_desc_); break; default: LOG(FATAL) << "Unknown model type"; } #ifdef LITE_WITH_NPU for (auto name : npu::DeviceInfo::Global().AllClientNames()) { // the npu offline model is saved in current dir // so just copy to dst dir CHECK_EQ( system(string_format("cp -r %s %s", name.c_str(), dir.c_str()).c_str()), 0) << "Failed copy NPU model to " << dir; } #endif } lite::Tensor *Predictor::GetInput(size_t offset) { auto *_feed_list = exec_scope_->FindVar("feed"); CHECK(_feed_list) << "no feed variable in exec_scope"; auto *feed_list = _feed_list->GetMutable>(); if (offset >= feed_list->size()) { feed_list->resize(offset + 1); } return &feed_list->at(offset); } const lite::Tensor *Predictor::GetOutput(size_t offset) const { auto *_fetch_list = exec_scope_->FindVar("fetch"); CHECK(_fetch_list) << "no fatch variable in exec_scope"; auto &fetch_list = *_fetch_list->GetMutable>(); CHECK_LT(offset, fetch_list.size()) << "offset " << offset << " overflow"; return &fetch_list.at(offset); } const std::vector *Predictor::GetOutputs() const { auto *_fetch_list = exec_scope_->FindVar("fetch"); CHECK(_fetch_list) << "no fatch variable in exec_scope"; auto &fetch_list = *_fetch_list->GetMutable>(); return &fetch_list; } const cpp::ProgramDesc &Predictor::program_desc() const { return program_desc_; } const RuntimeProgram &Predictor::runtime_program() const { return *program_; } void Predictor::Build(const std::string &model_path, const Place &prefer_place, const std::vector &valid_places, const std::vector &passes, lite_api::LiteModelType model_type) { LOG(INFO) << "Load model from " << model_path; switch (model_type) { case lite_api::LiteModelType::kProtobuf: LoadModelPb(model_path, scope_.get(), &program_desc_); break; case lite_api::LiteModelType::kNaiveBuffer: LoadModelNaive(model_path, scope_.get(), &program_desc_); break; default: LOG(FATAL) << "Unknown model type"; } Build(program_desc_, prefer_place, valid_places, passes); } void Predictor::Build(const cpp::ProgramDesc &desc, const Place &prefer_place, const std::vector &valid_places, const std::vector &passes) { program_desc_ = desc; Program program(desc, scope_, valid_places); optimizer_.KernelPickPreferPlace(prefer_place); core::KernelPickFactor factor; factor.ConsiderTarget(); factor.ConsiderPrecision(); optimizer_.Run(std::move(program), valid_places, factor, passes); exec_scope_ = optimizer_.exec_scope(); } void Predictor::GenRuntimeProgram() { program_ = optimizer_.GenRuntimeProgram(); CHECK_EQ(exec_scope_, program_->exec_scope()); program_generated_ = true; } void Predictor::GenNPURuntimeProgram() { program_ = optimizer_.GenNPURuntimeProgram(); CHECK_EQ(exec_scope_, program_->exec_scope()); program_generated_ = true; } const lite::Tensor *Predictor::GetTensor(const std::string &name) const { auto *var = exec_scope_->FindVar(name); return &var->Get(); } #ifdef LITE_WITH_TRAIN void Predictor::FeedVars(const std::vector &tensors) { auto var = scope_->FindVar("feed"); auto &feed_list = *(var->GetMutable>()); feed_list.resize(tensors.size()); for (size_t i = 0; i < tensors.size(); ++i) feed_list[i].ShareDataWith(tensors[i]); } #endif } // namespace lite } // namespace paddle