// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/cxx_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { #ifdef LITE_WITH_ARM void TestModel(const std::vector& valid_places, const Place& preferred_place) { DeviceInfo::Init(); DeviceInfo::Global().SetRunMode(lite_api::LITE_POWER_NO_BIND, FLAGS_threads); lite::Predictor predictor; predictor.Build(FLAGS_model_dir, "", "", preferred_place, valid_places); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({1, 3, 300, 300}))); auto* data = input_tensor->mutable_data(); auto item_size = input_tensor->dims().production(); for (int i = 0; i < item_size; i++) { data[i] = 1; } for (int i = 0; i < FLAGS_warmup; ++i) { predictor.Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor.Run(); } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; std::vector> results; // i = 1 results.emplace_back(std::vector( {3, 0.042103, 0.00439525, 0.0234783, 1.01127, 0.990756})); results.emplace_back(std::vector( {5, 0.0145793, 0.00860882, 0.0344975, 1.01375, 1.00129})); results.emplace_back(std::vector( {8, 0.560059, 0.00439525, 0.0234783, 1.01127, 0.990756})); results.emplace_back(std::vector( {9, 0.0165109, -0.0020006, 0.0013622, 0.999179, 0.991846})); results.emplace_back(std::vector( {12, 0.0263337, -0.0020006, 0.0013622, 0.999179, 0.991846})); results.emplace_back(std::vector( {15, 0.0116742, 0.00580454, 0.0321349, 1.00545, 0.98476})); results.emplace_back(std::vector( {17, 0.0405541, 0.00860882, 0.0344975, 1.01375, 1.00129})); results.emplace_back(std::vector( {18, 0.0231487, -0.00245976, 0.00771075, 1.01654, 1.00395})); results.emplace_back(std::vector( {19, 0.0133921, 0.00860882, 0.0344975, 1.01375, 1.00129})); results.emplace_back(std::vector( {20, 0.039664, 0.00860882, 0.0344975, 1.01375, 1.00129})); auto* out = predictor.GetOutput(0); ASSERT_EQ(out->dims().size(), 2); ASSERT_EQ(out->dims()[0], 10); ASSERT_EQ(out->dims()[1], 6); ASSERT_EQ(out->lod().size(), 1); ASSERT_EQ(out->lod()[0].size(), 2); ASSERT_EQ(out->lod()[0][0], 0); ASSERT_EQ(out->lod()[0][1], 10); for (int i = 0; i < results.size(); ++i) { for (int j = 0; j < results[i].size(); ++j) { EXPECT_NEAR( out->data()[j + (out->dims()[1] * i)], results[i][j], 5e-6); } } } TEST(MobileNetV1_SSD, test_arm) { std::vector valid_places({ Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kFloat)}, }); TestModel(valid_places, Place({TARGET(kARM), PRECISION(kFloat)})); } #endif // LITE_WITH_ARM } // namespace lite } // namespace paddle