// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/unsqueeze_op.h" #include #include #include "lite/core/op_registry.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/test_helper.h" namespace paddle { namespace lite { namespace kernels { namespace npu { namespace bridges { static DDim GetOutputShape(const std::vector& unsqz_dims, const DDim& in_dims) { int output_size = in_dims.size() + static_cast(unsqz_dims.size()); int cur_output_size = in_dims.size(); std::vector output_shape(output_size, 0); // Validate Check: rank range. CHECK_LE(output_size, 6) << "The output tensor's rank should be less than 6."; for (int axis : unsqz_dims) { int cur = axis < 0 ? axis + cur_output_size + 1 : axis; // Validate Check: the axis bound CHECK((cur >= 0) && (cur <= cur_output_size)) << "The unsqueeze dims must be within range of current rank."; // Move old axis, and insert new axis for (int i = cur_output_size; i >= cur; --i) { if (output_shape[i] == 1) { // Move axis output_shape[i + 1] = 1; output_shape[i] = 0; } } output_shape[cur] = 1; // Add the output size. cur_output_size++; } // Make output shape for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) { if (output_shape[out_idx] == 0) { output_shape[out_idx] = in_dims[in_idx++]; } } return DDim(output_shape); } template void unsqueeze_ref(const std::shared_ptr op) { Scope* scope = op->scope(); const OpInfo* op_info = op->op_info(); auto x = scope->FindTensor("x"); auto out = scope->FindMutableTensor("out_ref"); auto axes = op_info->GetAttr>("axes"); auto y_dims = GetOutputShape(axes, x->dims()); out->Resize(y_dims); auto x_data = x->data(); auto out_data = out->mutable_data(); memcpy(out_data, x_data, x->numel() * sizeof(float)); } void test_unsqueeze(const std::vector& input_shape, std::vector axes) { // prepare input&output variables Scope scope; std::string x_var_name = "x"; std::string out_var_name = "out"; std::string out_ref_var_name = "out_ref"; auto* x = scope.NewTensor(x_var_name); auto* out = scope.NewTensor(out_var_name); auto* out_ref = scope.NewTensor(out_ref_var_name); x->Resize(input_shape); // initialize input&output data FillTensor(x); // initialize op desc cpp::OpDesc opdesc; opdesc.SetType("unsqueeze"); opdesc.SetInput("X", {x_var_name}); opdesc.SetOutput("Out", {out_var_name}); opdesc.SetAttr("axes", axes); // create and convert op to NPU model, then run it on NPU auto op = CreateOp(opdesc, &scope); LauchOp(op, {x_var_name}, {out_var_name}); // execute reference implementation and save to output tensor unsqueeze_ref(op); // compare results CHECK_EQ(out->dims().size(), out_ref->dims().size()); for (int i = 0; i < out->dims().size(); i++) { CHECK_EQ(out->dims()[i], out_ref->dims()[i]); } auto* out_data = out->mutable_data(); auto* out_ref_data = out_ref->mutable_data(); for (int i = 0; i < out->dims().production(); i++) { EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2); } } TEST(NPUBridges, unsqueeze) { test_unsqueeze({2}, {0, 2}); test_unsqueeze({2, 3}, {1, 3}); test_unsqueeze({1, 2, 3}, {3}); test_unsqueeze({5, 6, 7}, {1}); } } // namespace bridges } // namespace npu } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_OP(unsqueeze); USE_NPU_BRIDGE(unsqueeze);