/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "operators/kernel/fetch_kernel.h" namespace paddle_mobile { namespace operators { template <> bool FetchKernel::Init(FetchParam *param) { auto input = const_cast(param->InputX()); int col = param->Col(); DLOG << "col = " << col; auto output = &(param->Out()->at(col)); if (input->type() == type_id()) { return true; } output->init(type_id().hash_code()); output->Resize(input->dims()); fpga::format_fp32_ofm(output); int outC = 1; int outH = 1; int outW = 1; if (output->dims().size() == 4) { outC = output->dims()[1]; outH = output->dims()[2]; outW = output->dims()[3]; } else { // 2 outC = output->dims()[1]; } int unalignedCW = outC * outW; int alignedCW = fpga::align_to_x(unalignedCW, IMAGE_ALIGNMENT); if (alignedCW != unalignedCW) { param->aligned_out.Resize(input->dims()); param->aligned_out.mutable_data(input->dims()); fpga::fpga_flush(param->aligned_out.data(), outH * unalignedCW * sizeof(float)); } fpga::BypassArgs args = {fpga::DATA_TYPE_FP16}; args.input_data_type = fpga::DATA_TYPE_FP16; args.output_data_type = fpga::DATA_TYPE_FP32; args.input_layout_type = fpga::LAYOUT_CHW; args.output_layout_type = fpga::LAYOUT_HWC; args.image.address = input->data(); args.image.channels = (uint32_t)(input->fpga_data_num); args.image.height = 1; args.image.width = 1; args.image.pad_height = 0; args.image.pad_width = 0; args.output.address = output->data(); args.output.scale_address = output->scale; param->fpga_bypass_args = args; return true; } void dealign(float *src, float *dst, int input_c, int input_h, int input_w) { int alignCW = paddle_mobile::fpga::align_to_x(input_c * input_w, 16); int dealignCW = input_c * input_w; for (int h = 0; h < input_h; ++h) { auto input_offset = h * alignCW; auto output_offset = h * dealignCW; memcpy((dst + output_offset), (src + input_offset), dealignCW * sizeof(float)); } } template <> void FetchKernel::Compute(const FetchParam ¶m) { auto input = const_cast(param.InputX()); int col = param.Col(); auto output = ¶m.Out()->at(col); if (input->type() == type_id()) { output->ShareDataWith(*input); // output dims == input dim output->Resize(input->dims()); return; } fpga::BypassArgs args = param.fpga_bypass_args; auto input_address = (input->data()); args.image.address = static_cast(input_address); float *outdata_ptr = reinterpret_cast(param.fpga_bypass_args.output.address); const int num_th = 32; if (output->fpga_data_num < num_th) { fpga::fpga_invalidate(input_address, (input->fpga_data_num) * sizeof(half)); for (int idx = 0; idx < product(input->dims()); ++idx) { outdata_ptr[idx] = fpga::fp16_2_fp32(input_address[idx]); } return; } fpga::PerformBypass(args); int outC = 1; int outH = 1; int outW = 1; if (output->dims().size() == 4) { outC = output->dims()[1]; outH = output->dims()[2]; outW = output->dims()[3]; } else { // 2 outC = output->dims()[1]; } fpga::fpga_invalidate(param.fpga_bypass_args.output.address, output->fpga_data_num * sizeof(float)); int unalignedCW = outC * outW; int alignedCW = fpga::align_to_x(unalignedCW, IMAGE_ALIGNMENT); if (unalignedCW != alignedCW) { auto aligned_ptr = const_cast(param.aligned_out.data()); dealign(outdata_ptr, aligned_ptr, outC, outH, outW); memcpy(outdata_ptr, aligned_ptr, outC * outH * outW * sizeof(float)); fpga::fpga_flush(outdata_ptr, outC * outH * outW * sizeof(float)); } } template class FetchKernel; } // namespace operators } // namespace paddle_mobile