/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef TRANSPOSE2_OP #include #include "common/enforce.h" #include "operators/transpose2_op.h" namespace paddle_mobile { namespace operators { template void Transpose2Op::InferShape() const { auto input_x_dims = this->param_.InputX()->dims(); auto axis = this->param_.Axis(); size_t x_dims_size = input_x_dims.size(); size_t axis_size = axis.size(); #ifdef PADDLE_MOBILE_CL bool shouldResize = true; int diff_dim = 0; if (axis_size > 4) { for (int i = 0; i < axis_size - 4; ++i) { if (axis[i] != i) { shouldResize = false; break; } else { diff_dim++; } } if (shouldResize) { std::vector temp_axis_dims; temp_axis_dims.reserve(static_cast(4)); for (int i = axis_size - 4; i < axis_size; ++i) { temp_axis_dims.push_back(axis[i] - diff_dim); } axis.resize(4); axis.clear(); axis.insert(axis.begin(), temp_axis_dims.begin(), temp_axis_dims.end()); } } auto input_dim_size = input_x_dims.size(); shouldResize = true; if (input_dim_size > 4) { for (int i = 0; i < input_dim_size - 4; ++i) { if (input_x_dims[i] != 0 && input_x_dims[i] != 1) { shouldResize = false; break; } } if (shouldResize) { std::vector temp_intput_dims; temp_intput_dims.reserve(static_cast(4)); for (int i = input_dim_size - 4; i < input_dim_size; ++i) { temp_intput_dims.push_back(input_x_dims[i]); } framework::DDim temp_ddim = framework::make_ddim(temp_intput_dims); this->param_.InputX()->Resize(temp_ddim); } } axis_size = axis.size(); input_x_dims = this->param_.InputX()->dims(); x_dims_size = input_x_dims.size(); #endif PADDLE_MOBILE_ENFORCE((x_dims_size == axis_size), "input_dims must " "be equal to the axis_size. ") std::vector count(axis_size, 0); for (size_t i = 0; i < axis_size; i++) { PADDLE_MOBILE_ENFORCE( axis[i] < static_cast(axis_size) && ++count[axis[i]] == 1, "Each element of Attribute axis should be a unique value " "range from 0 to (dims - 1), " "where the dims is the axis's size"); } framework::DDim out_dims(input_x_dims); for (size_t i = 0; i < axis_size; i++) { out_dims[i] = input_x_dims[axis[i]]; } this->param_.Out()->Resize(out_dims); std::vector xshape_dims(input_x_dims.size() + 1, 0); for (int i = 0; i < input_x_dims.size(); ++i) { xshape_dims[i + 1] = input_x_dims[i]; } this->param_.OutputXShape()->Resize(framework::make_ddim(xshape_dims)); } } // namespace operators } // namespace paddle_mobile namespace ops = paddle_mobile::operators; #ifdef PADDLE_MOBILE_CPU REGISTER_OPERATOR_CPU(transpose2, ops::Transpose2Op); #endif #ifdef PADDLE_MOBILE_FPGA REGISTER_OPERATOR_FPGA(transpose2, ops::Transpose2Op); #endif #ifdef PADDLE_MOBILE_CL REGISTER_OPERATOR_CL(transpose2, ops::Transpose2Op); #endif #endif // TRANSPOSE_OP