// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/xpu/bridges/graph.h" #include "lite/kernels/xpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace xpu { int MulConverter(void* ctx, OpLite* op) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[XPU] Converting " + op_type + "..."; // Get input, and attributes auto x_var_name = op_info->Input("X").front(); auto y_var_name = op_info->Input("Y").front(); auto out_var_name = op_info->Output("Out").front(); auto y = scope->FindMutableTensor(y_var_name); auto y_dims = y->dims(); CHECK_EQ(y_dims.size(), 2) << "xpu now only support y_dims.size() == 2"; auto x_num_col_dims = op_info->GetAttr("x_num_col_dims"); CHECK_EQ(x_num_col_dims, 1) << "xpu now only support x_num_col_dims == 1"; auto y_num_col_dims = op_info->GetAttr("x_num_col_dims"); CHECK_EQ(y_num_col_dims, 1) << "xpu now only support y_num_col_dims == 1"; // Flatten x node auto x_node = graph->AddNode( x_var_name + "/flatten", graph->builder_.CreateBatchFlatten(*graph->GetNode(x_var_name))); // Transpose y data and create y node Tensor transpose_y; DDim transpose_y_dims(std::vector{y_dims[1], y_dims[0]}); transpose_y.Resize(transpose_y_dims); auto transpose_y_data = transpose_y.mutable_data(); auto y_data = y->mutable_data(); for (int i = 0; i < transpose_y_dims[0]; i++) { for (int j = 0; j < transpose_y_dims[1]; j++) { transpose_y_data[i * transpose_y_dims[1] + j] = y_data[j * transpose_y_dims[0] + i]; } } auto y_const_node = graph->AddNode(y_var_name + "/transpose", transpose_y); // Create mul node and set params from op graph->AddNode( out_var_name, graph->builder_.CreateDense(*x_node, static_cast(y_dims[1]), ::xtcl::NullValue<::xtcl::DataType>(), *y_const_node)); return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace xpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(XPU, mul, paddle::lite::subgraph::xpu::MulConverter);