// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/conv_op.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/xpu/bridges/graph.h" #include "lite/kernels/xpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace xpu { int ConvConverter(void* ctx, OpLite* op) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[XPU] Converting " << op_type << "... "; // Get input, filter and op attributes auto input_var_name = op_info->Input("Input").front(); auto input = scope->FindVar(input_var_name)->GetMutable(); auto input_dims = input->dims(); auto filter_var_name = op_info->Input("Filter").front(); auto filter = scope->FindVar(filter_var_name)->GetMutable(); auto filter_dims = filter->dims(); auto output_var_name = op_info->Output("Output").front(); auto bs = input_dims[0]; auto oc = filter_dims[0]; CHECK_EQ(input_dims.size(), 4); CHECK_EQ(filter_dims.size(), 4); auto strides = op_info->GetAttr>("strides"); auto paddings = op_info->GetAttr>("paddings"); auto groups = op_info->GetAttr("groups"); auto dilations = op_info->GetAttr>("dilations"); auto fuse_relu = op_info->GetAttr("fuse_relu"); CHECK_EQ(strides.size(), 2L); CHECK_EQ(dilations.size(), 2L); if (paddings.size() == 2L) { for (size_t i = 0; i < strides.size(); ++i) { int copy_pad = *(paddings.begin() + 2 * i); paddings.insert(paddings.begin() + 2 * i + 1, copy_pad); } } CHECK_EQ(paddings.size(), 4L) << "Paddings size should be the same or twice as the input size."; std::string padding_algorithm(""); if (op_info->HasAttr("padding_algorithm")) { padding_algorithm = op_info->GetAttr("padding_algorithm"); } operators::UpdatePaddingAndDilation(&paddings, &dilations, strides, padding_algorithm, input_dims, filter_dims); std::vector output_shape({bs, oc}); for (size_t i = 0; i < 2; i++) { const int dkernel = dilations[i] * (filter_dims[2 + i] - 1) + 1; output_shape.push_back( (input_dims[i + 2] + paddings[2 * i] + paddings[2 * i + 1] - dkernel) / strides[i] + 1); } DDim output_dims(output_shape); // Create filter node auto filter_const_node = graph->AddNode(filter_var_name, *filter); // Create conv node and set input, filter, bias nodes and attributes auto conv_attrs = xtcl::make_node(); conv_attrs->strides = std::move(CvtShape(strides)); conv_attrs->padding = std::move(CvtShape(paddings)); conv_attrs->dilation = std::move(CvtShape(dilations)); conv_attrs->groups = groups; // conv_attrs->channels = nullptr; conv_attrs->kernel_size = std::move(xtcl::Array(nullptr)); conv_attrs->data_layout = "NCHW"; conv_attrs->kernel_layout = "OIHW"; conv_attrs->out_layout = ""; // conv_attrs->out_dtype = ""; auto conv_node = graph->AddNode( output_var_name, graph->builder_.CreateConv2D( *graph->GetNode(input_var_name), *filter_const_node, conv_attrs)); // Create bias node if exists bias // supports the bias nodes with the following dimensions // 0: {oc} // 1: {1, oc, oh, ow} // 2: {n, oc, oh, ow} if (HasInputArg(op_info, scope, "Bias")) { auto bias_var_name = op_info->Input("Bias").front(); auto* bias = scope->FindVar(bias_var_name)->GetMutable(); auto bias_dims = bias->dims(); auto bias_data_size = bias_dims.production(); auto output_data_size = output_dims.production(); std::vector bias_shape; bool is_channel_bias = false; if (bias_data_size == oc) { // 0: {oc} bias_shape = {oc}; is_channel_bias = true; } else if (bias_data_size == output_data_size / bs) { // 1: {1, oc, oh, ow} bias_shape = {1, output_dims[1], output_dims[2], output_dims[3]}; } else if (bias_data_size == output_data_size) { // 2: {n, oc, oh, ow} bias_shape = output_dims.Vectorize(); } else { LOG(ERROR) << "[XPU] Bias dimension " << bias_dims << " isn't supported in conv2d Op when output dimension is " << output_dims; } std::shared_ptr bias_node = nullptr; if (graph->HasNode(bias_var_name)) { // Bias node from input node bias_node = graph->GetNode(bias_var_name); } else { // Bias node with const tensor bias_node = graph->AddNode(bias_var_name, *bias, bias_shape); } std::shared_ptr add_node = nullptr; if (is_channel_bias) { add_node = graph->AddNode( output_var_name, graph->builder_.CreateBiasAdd(*conv_node, 1, *bias_node)); } else { add_node = graph->AddNode( output_var_name, graph->builder_.CreateBinaryOp("add", *conv_node, *bias_node)); } conv_node = add_node; } if (fuse_relu) { // Append relu node if fuse_relu is true graph->AddNode(output_var_name, graph->builder_.CreateRelu(*conv_node)); } return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace xpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(XPU, conv2d, paddle::lite::subgraph::xpu::ConvConverter); REGISTER_SUBGRAPH_BRIDGE(XPU, depthwise_conv2d, paddle::lite::subgraph::xpu::ConvConverter);