// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" #include "lite/utils/string.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class PoolCompute : public KernelLite { public: using param_t = operators::PoolParam; std::string doc() const override { return "Pool using cl::Buffer, kFloat"; } void PrepareForRun() override { const auto& param = *param_.get_mutable(); kernel_func_name_ += param.pooling_type; auto& context = ctx_->As(); context.cl_context()->AddKernel( kernel_func_name_, "buffer/pool_kernel.cl", build_options_); } void Run() override { const auto& param = *param_.get_mutable(); const auto& in_dims = param.x->dims(); const auto& out_dims = param.output->dims(); const std::string pooling_type = param.pooling_type; const bool global_pooling = param.global_pooling; std::vector paddings = *param.paddings; std::vector strides = param.strides; std::vector ksize = param.ksize; if (global_pooling) { for (size_t i = 0; i < ksize.size(); ++i) { paddings[2 * i] = 0; paddings[2 * i + 1] = 0; ksize[i] = static_cast(in_dims[i + 2]); } } bool pads_equal = (paddings[0] == paddings[1]) && (paddings[2] == paddings[3]); if (!pads_equal) { LOG(FATAL) << "padding requires pad_left == pad_right, pad_top == pad_bottom"; } auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto* input_buf = param.x->data(); auto* output_buf = param.output->mutable_data(TARGET(kOpenCL)); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); cl_int status; auto numel = out_dims.production(); int arg_idx = 0; status = kernel.setArg(arg_idx, static_cast(numel)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *input_buf); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(in_dims[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(in_dims[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(in_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_dims[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(ksize[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(ksize[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(strides[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(strides[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(paddings[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(paddings[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *output_buf); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange(static_cast(numel)); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(output_buf, event_); } private: std::string kernel_func_name_{"pool_"}; std::string build_options_{"-DCL_DTYPE_float"}; std::shared_ptr event_{new cl::Event}; }; class PoolComputeImage2D : public KernelLite { public: using param_t = operators::PoolParam; std::string doc() const override { return "Pool using cl::Image2D, kFloat"; } void PrepareForRun() override { const auto& param = *param_.get_mutable(); kernel_func_name_ += param.pooling_type; auto& context = ctx_->As(); context.cl_context()->AddKernel( kernel_func_name_, "image/pool_kernel.cl", build_options_); } void Run() override { const auto& param = *param_.get_mutable(); const auto& in_dims = param.x->dims(); const auto& out_dims = param.output->dims(); const std::string pooling_type = param.pooling_type; const bool global_pooling = param.global_pooling; std::vector paddings = *param.paddings; std::vector strides = param.strides; std::vector ksize = param.ksize; if (global_pooling) { for (size_t i = 0; i < ksize.size(); ++i) { paddings[2 * i] = 0; paddings[2 * i + 1] = 0; ksize[i] = static_cast(in_dims[i + 2]); } } bool pads_equal = (paddings[0] == paddings[1]) && (paddings[2] == paddings[3]); if (!pads_equal) { LOG(FATAL) << "padding requires pad_left == pad_right, pad_top == pad_bottom"; } auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto* x_img = param.x->data(); LOG(INFO) << "x_image" << x_img; auto out_image_shape = InitImageDimInfoWith(out_dims); LOG(INFO) << "out_image_shape = " << out_image_shape["width"] << " " << out_image_shape["height"]; auto* out_img = param.output->mutable_data( out_image_shape["width"], out_image_shape["height"]); LOG(INFO) << "out_image" << out_img; STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); int c_block = (out_dims[1] + 3) / 4; int w = out_dims[3]; int nh = out_dims[0] * out_dims[2]; auto global_work_size = cl::NDRange(c_block, w, nh); cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, *x_img); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *out_img); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(in_dims[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(in_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_dims[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(ksize[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(ksize[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(strides[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(strides[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(paddings[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(paddings[0])); CL_CHECK_FATAL(status); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_img, event_); } private: std::string kernel_func_name_{"pool_"}; std::string build_options_{"-DCL_DTYPE_float"}; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(pool2d, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::PoolCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .Finalize(); REGISTER_LITE_KERNEL(pool2d, kOpenCL, kFloat, kImageDefault, paddle::lite::kernels::opencl::PoolComputeImage2D, image2d) .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault))}) .Finalize();