// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/graph.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace npu { int BatchNormConverter(void* ctx, OpLite* op) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[NPU] Converting " + op_type + "..."; auto x_var_name = op_info->Input("X").front(); auto y_var_name = op_info->Output("Y").front(); auto batch_norm_node = graph->AddNode(y_var_name); batch_norm_node->set_input_x(*graph->GetNode(x_var_name)); auto scale_var_name = op_info->Input("Scale").front(); auto scale = scope->FindVar(scale_var_name)->GetMutable(); auto scale_const_node = graph->AddNode(scale_var_name, *scale); auto bias_var_name = op_info->Input("Bias").front(); auto bias = scope->FindVar(bias_var_name)->GetMutable(); auto bias_const_node = graph->AddNode(bias_var_name, *bias); auto mean_var_name = op_info->Input("Mean").front(); auto mean = scope->FindVar(mean_var_name)->GetMutable(); auto mean_const_node = graph->AddNode(mean_var_name, *mean); auto variance_var_name = op_info->Input("Variance").front(); auto variance = scope->FindVar(variance_var_name)->GetMutable(); auto variance_const_node = graph->AddNode(variance_var_name, *variance); float momentum = op_info->GetAttr("momentum"); float epsilon = op_info->GetAttr("epsilon"); int mode = 1; // bnScale, bnBias tensor dims are 1xCx1x1 bool use_global_stats = op_info->GetAttr("use_global_stats"); batch_norm_node->set_input_scale(*scale_const_node); batch_norm_node->set_input_offset(*bias_const_node); batch_norm_node->set_input_mean(*mean_const_node); batch_norm_node->set_input_variance(*variance_const_node); batch_norm_node->set_attr_momentum(momentum); batch_norm_node->set_attr_epsilon(epsilon); batch_norm_node->set_attr_mode(mode); batch_norm_node->set_attr_use_global_stats(use_global_stats); return SUCCESS; } } // namespace npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(NPU, batch_norm, paddle::lite::subgraph::npu::BatchNormConverter);