// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/fpga/elementwise_compute.h" #include #include "lite/backends/arm/math/funcs.h" #include "lite/backends/fpga/KD/debugger.hpp" namespace paddle { namespace lite { namespace kernels { namespace fpga { using float16 = zynqmp::float16; void ElementwiseAddCompute::PrepareForRun() { zynqmp::ElementwiseAddParam& ew_param = pe_.param(); auto& param = Param(); param.Out->mutable_data(); ew_param.inputs = {param.X->ZynqTensor(), param.Y->ZynqTensor()}; ew_param.output = param.Out->ZynqTensor(); ew_param.axis = param.axis; ew_param.relu.enabled = false; pe_.init(); pe_.apply(); } void ElementwiseAddCompute::Run() { pe_.dispatch(); #ifdef FPGA_PRINT_TENSOR zynqmp::ElementwiseAddParam& ew_param = pe_.param(); Debugger::get_instance().registerOutput("ew_add", ew_param.output); #endif } void ElementwiseAddActivationCompute::PrepareForRun() { zynqmp::ElementwiseAddParam& ew_param = pe_.param(); auto& param = Param(); if (param.act_type != "relu") { LOG(FATAL) << "unsupported Activation type: " << param.act_type; } param.Out->mutable_data(); ew_param.inputs = {param.X->ZynqTensor(), param.Y->ZynqTensor()}; ew_param.output = param.Out->ZynqTensor(); ew_param.axis = param.axis; ew_param.relu.enabled = true; pe_.init(); pe_.apply(); } void ElementwiseAddActivationCompute::Run() { pe_.dispatch(); #ifdef FPGA_PRINT_TENSOR zynqmp::ElementwiseAddParam& ew_param = pe_.param(); Debugger::get_instance().registerOutput("ew_add", ew_param.output); #endif } void ElementwiseMulCompute::PrepareForRun() { zynqmp::ScaleParam& scale_param = pe_.param(); auto& param = Param(); param.Out->mutable_data(); scale_param.input = param.X->ZynqTensor(); scale_param.output = param.Out->ZynqTensor(); scale_param.relu.enabled = false; int channel = scale_param.input->shape().channel(); zynqmp::Tensor* scale = new zynqmp::Tensor(); zynqmp::Tensor* bias = new zynqmp::Tensor(); scale_param.scale = scale; scale_param.bias = bias; zynqmp::Shape shape(zynqmp::N, {channel}); float* scale_data = scale->mutableData(zynqmp::FP32, shape); float* bias_data = bias->mutableData(zynqmp::FP32, shape); float scale_value = param.Y->data()[0]; for (int i = 0; i < channel; ++i) { if (param.Y->dims().production() != 1) { scale_value = param.Y->ZynqTensor()->data()[i]; } scale_data[i] = scale_value; bias_data[i] = 0; } pe_.init(); pe_.apply(); } void ElementwiseMulCompute::Run() { pe_.dispatch(); #ifdef FPGA_PRINT_TENSOR zynqmp::ScaleParam& scale_param = pe_.param(); Debugger::get_instance().registerOutput("ew_mul_in", scale_param.input); Debugger::get_instance().registerOutput("ew_mul", scale_param.output); #endif } } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(elementwise_add, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::ElementwiseAddCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL( fusion_elementwise_add_activation, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::ElementwiseAddActivationCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL(elementwise_mul, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::ElementwiseMulCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize();