// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/fpga/dropout_compute.h" #include #include "lite/backends/fpga/KD/debugger.hpp" #include "lite/backends/fpga/KD/float16.hpp" namespace paddle { namespace lite { namespace kernels { namespace fpga { void DropoutCompute::PrepareForRun() { auto& param = Param(); param.output->mutable_data(); zynqmp::ScaleParam& scale_param = pe_.param(); scale_param.input = param.x->ZynqTensor(); scale_param.output = param.output->ZynqTensor(); int channel = scale_param.input->shape().channel(); zynqmp::Tensor* scale = new zynqmp::Tensor(); zynqmp::Tensor* bias = new zynqmp::Tensor(); zynqmp::Shape shape(zynqmp::N, {channel}); float* scale_data = scale->mutableData(zynqmp::FP32, shape); float* bias_data = bias->mutableData(zynqmp::FP32, shape); float scale_value = 1 - param.dropout_prob; for (int i = 0; i < channel; ++i) { scale_data[i] = scale_value; bias_data[i] = 0.0f; } scale->flush(); bias->flush(); scale_param.bias = bias; scale_param.scale = scale; pe_.init(); pe_.apply(); } void DropoutCompute::Run() { pe_.dispatch(); #ifdef FPGA_PRINT_TENSOR zynqmp::ScaleParam& scale_param = pe_.param(); Debugger::get_instance().registerOutput("dropout", scale_param.output); #endif } } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(dropout, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::DropoutCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("Mask", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();