// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/conv_winograd.h" #include #include "lite/backends/arm/math/conv_impl.h" #include "lite/backends/arm/math/packed_sgemm.h" namespace paddle { namespace lite { namespace kernels { namespace arm { template <> void WinogradConv::ReInitWhenNeeded() { auto& param = this->Param(); auto& ctx = this->ctx_->template As(); int threads = ctx.threads(); auto x_dims = param.x->dims(); auto w_dims = param.filter->dims(); auto o_dims = param.output->dims(); if (last_shape_ == x_dims) { return; } int ic = x_dims[1]; int ih = x_dims[2]; int iw = x_dims[3]; int oc = o_dims[1]; int oh = o_dims[2]; int ow = o_dims[3]; int tile_block = 8; choose_small_ = ow * oh / (tile_block * threads) < 36 ? true : false; if (choose_small_) { wino_iw = 4; if (last_function_ == 0) { return; } last_function_ = 0; } else { wino_iw = 8; if (last_function_ == 1) { return; } last_function_ = 1; } auto pad = *(param.paddings); int pad_h = pad[0]; int pad_w = pad[2]; int oc_pad = (oc + 3) / 4 * 4; int ic_pad = (ic + 3) / 4 * 4; const int new_input_size = (ic + 3) / 4 * 4 * (ih + pad_h * 2) * (iw + pad_w * 2); const int temp_size = (tile_block * ((ic + 3) / 4 + (oc + 3) / 4) * 4 * wino_iw * wino_iw + 8 * wino_iw * wino_iw) * threads; ctx.ExtendWorkspace((temp_size + new_input_size) * sizeof(float)); weights_.Resize({1, 1, 1, wino_iw * wino_iw * oc_pad * ic_pad}); ctx.ExtendWorkspace((temp_size + new_input_size) * sizeof(float)); void* trans_tmp_ptr = malloc(sizeof(float) * wino_iw * wino_iw * oc * ic); auto weights_data_ = weights_.mutable_data(); if (!choose_small_) { lite::arm::math::weight_trans_c4_8x8( weights_data_, param.filter->data(), ic, oc, trans_tmp_ptr); } else { lite::arm::math::weight_trans_c4_4x4( weights_data_, param.filter->data(), ic, oc, trans_tmp_ptr); } free(trans_tmp_ptr); last_shape_ = x_dims; } template <> void WinogradConv::PrepareForRun() { ReInitWhenNeeded(); } template <> void WinogradConv::Run() { auto& param = this->Param(); auto& ctx = this->ctx_->template As(); const auto* i_data = param.x->data(); const auto* w_data = weights_.data(); const auto* b_data = param.bias ? param.bias->data() : nullptr; auto* o_data = param.output->mutable_data(); auto x_dims = param.x->dims(); auto w_dims = param.filter->dims(); auto o_dims = param.output->dims(); int iw = x_dims[3]; // nchw int ih = x_dims[2]; int ic = x_dims[1]; int bs = x_dims[0]; int oh = o_dims[2]; int ow = o_dims[3]; int oc = o_dims[1]; if (!choose_small_) { lite::arm::math::conv_compute_6x6_3x3(i_data, o_data, bs, oc, oh, ow, ic, ih, iw, w_data, b_data, param, &ctx); } else { int tile_block = 8; int block_count = (((ow + 1) / 2) * ((oh + 1) / 2) + tile_block - 1) / tile_block; if (block_count != 1) { lite::arm::math::conv_compute_2x2_3x3(i_data, o_data, bs, oc, oh, ow, ic, ih, iw, w_data, b_data, param, &ctx); } else { lite::arm::math::conv_compute_2x2_3x3_small(i_data, o_data, bs, oc, oh, ow, ic, ih, iw, w_data, b_data, param, &ctx); } } } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle