// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/lite_api_test_helper.h" #include "lite/api/paddle_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/utils/cp_logging.h" namespace paddle { namespace lite { TEST(Step_rnn, test_step_rnn_lite_x86) { std::string model_dir = FLAGS_model_dir; lite_api::CxxConfig config; config.set_model_dir(model_dir); config.set_cpu_math_library_math_threads(10); config.set_valid_places({lite_api::Place{TARGET(kX86), PRECISION(kInt64)}, lite_api::Place{TARGET(kX86), PRECISION(kFloat)}, lite_api::Place{TARGET(kHost), PRECISION(kFloat)}}); auto predictor = lite_api::CreatePaddlePredictor(config); std::vector target_names = {"item_type_id", "mthid_id", "source_id_id", "layout_id", "mark_id", "category_id", "subcategory_id", "score_segment_id", "item_attention_id", "queue_num_id", "micro_video_id", "vertical_type_id"}; for (int i = 0; i < target_names.size(); ++i) { auto input_tensor = predictor->GetInput(i); int size = 0; if (i == 6 || i == 8) { input_tensor->Resize(std::vector{5, 1}); input_tensor->SetLoD({{0, 5}}); size = 5; } else { input_tensor->Resize(std::vector{1, 1}); input_tensor->SetLoD({{0, 1}}); size = 1; } auto* data = input_tensor->mutable_data(); for (int i = 0; i < size; i++) data[i] = 1; } for (int i = 0; i < FLAGS_warmup; ++i) { predictor->Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor->Run(); } // LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; std::vector> results; // i = 1 results.emplace_back(std::vector({0.5030127, 0.496987})); auto out = predictor->GetOutput(0); std::vector out_shape = out->shape(); for (int i = 0; i < results.size(); ++i) { for (int j = 0; j < results[i].size(); ++j) { EXPECT_NEAR( out->data()[j + (out_shape[1] * i)], results[i][j], 1e-6); } } } } // namespace lite } // namespace paddle