/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "../test_helper.h" #include "../test_include.h" void test(int argc, char *argv[]); int main(int argc, char *argv[]) { test(argc, argv); return 0; } void test(int argc, char *argv[]) { int arg_index = 1; bool fuse = std::stoi(argv[arg_index]) == 1; arg_index++; bool enable_memory_optimization = std::stoi(argv[arg_index]) == 1; arg_index++; bool quantification = std::stoi(argv[arg_index]) == 1; arg_index++; int quantification_fold = std::stoi(argv[arg_index]); arg_index++; paddle_mobile::PaddleMobileConfigInternal config; config.memory_optimization_level = enable_memory_optimization ? MemoryOptimizationWithoutFeeds : NoMemoryOptimization; // save obfuscated model // config.model_obfuscate_key = "asdf"; // std::ofstream out_file("new-params", std::ofstream::binary); // char *out_data = ReadFileToBuff("./checked_model/params"); // int len = GetFileLength("./checked_model/params"); // out_file.write(out_data, len); // out_file.close(); #ifdef PADDLE_MOBILE_CL // config.load_when_predict = true; paddle_mobile::PaddleMobile paddle_mobile(config); paddle_mobile.SetCLPath("/data/local/tmp/bin"); std::cout << "testing opencl yyz " << std::endl; #else paddle_mobile::PaddleMobile paddle_mobile(config); paddle_mobile.SetThreadNum(1); std::cout << "testing cpu yyz " << std::endl; #endif int dim_count = std::stoi(argv[arg_index]); arg_index++; int size = 1; std::vector dims; for (int i = 0; i < dim_count; i++) { int64_t dim = std::stoi(argv[arg_index + i]); size *= dim; dims.push_back(dim); } arg_index += dim_count; bool is_lod = std::stoi(argv[arg_index]) == 1; arg_index++; paddle_mobile::framework::LoD lod{{}}; if (is_lod) { int lod_count = std::stoi(argv[arg_index]); arg_index++; for (int i = 0; i < lod_count; i++) { int dim = std::stoi(argv[arg_index + i]); lod[0].push_back(dim); } arg_index += lod_count; } int var_count = std::stoi(argv[arg_index]); arg_index++; bool is_sample_step = std::stoi(argv[arg_index]) == 1; arg_index++; int sample_arg = std::stoi(argv[arg_index]); int sample_step = sample_arg; int sample_num = sample_arg; arg_index++; std::vector var_names; for (int i = 0; i < var_count; i++) { std::string var_name = argv[arg_index + i]; var_names.push_back(var_name); } arg_index += var_count; bool check_shape = std::stoi(argv[arg_index]) == 1; arg_index++; auto time1 = time(); if (paddle_mobile.Load("./checked_model/model", "./checked_model/params", fuse, quantification, 1, true, quantification_fold)) { auto time2 = time(); std::cout << "auto-test" << " load-time-cost :" << time_diff(time1, time2) << "ms" << std::endl; float *input_data_array = new float[size]; std::ifstream in("input.txt", std::ios::in); for (int i = 0; i < size; i++) { float num; in >> num; input_data_array[i] = num; } in.close(); auto time3 = time(); // std::vector input_data; // for (int i = 0; i < size; i++) { // float num = input_data_array[i]; // input_data.push_back(num); // } // paddle_mobile::framework::Tensor input_tensor(input_data, // paddle_mobile::framework::make_ddim(dims)); paddle_mobile::framework::Tensor input_tensor( input_data_array, paddle_mobile::framework::make_ddim(dims)); auto time4 = time(); std::cout << "auto-test" << " preprocess-time-cost :" << time_diff(time3, time4) << "ms" << std::endl; paddle_mobile::framework::LoDTensor input_lod_tensor; if (is_lod) { input_lod_tensor.Resize(paddle_mobile::framework::make_ddim(dims)); input_lod_tensor.set_lod(lod); auto *tensor_data = input_lod_tensor.mutable_data(); for (int i = 0; i < size; i++) { tensor_data[i] = input_data_array[i]; } } // // 预热10次 // for (int i = 0; i < 10; i++) { // if (is_lod) { // auto out = paddle_mobile.Predict(input_lod_tensor); // } else { // paddle_mobile.Feed(var_names[0], input_tensor); // paddle_mobile.Predict(); // } // } // // 测速 // auto time5 = time(); // for (int i = 0; i < 50; i++) { // if (is_lod) { // auto out = paddle_mobile.Predict(input_lod_tensor); // } else { // paddle_mobile.Feed(var_names[0], input_tensor); // paddle_mobile.Predict(); // } // } // auto time6 = time(); // std::cout << "auto-test" // << " predict-time-cost " << time_diff(time5, time6) / 50 << // "ms" // << std::endl; // 测试正确性 if (is_lod) { auto out = paddle_mobile.Predict(input_lod_tensor); } else { paddle_mobile.Feed(var_names[0], input_tensor); paddle_mobile.Predict(); } #ifdef PADDLE_MOBILE_CL for (auto var_name : var_names) { auto cl_image = paddle_mobile.FetchImage(var_name); if (cl_image == nullptr || cl_image->GetCLImage() == nullptr) { continue; } auto len = cl_image->numel(); if (len == 0) { continue; } int width = cl_image->ImageDims()[0]; int height = cl_image->ImageDims()[1]; paddle_mobile::framework::half_t *image_data = new paddle_mobile::framework::half_t[height * width * 4]; cl_int err; cl_mem image = cl_image->GetCLImage(); size_t origin[3] = {0, 0, 0}; size_t region[3] = {width, height, 1}; err = clEnqueueReadImage(cl_image->CommandQueue(), image, CL_TRUE, origin, region, 0, 0, image_data, 0, NULL, NULL); CL_CHECK_ERRORS(err); float *tensor_data = new float[cl_image->numel()]; auto converter = cl_image->Converter(); converter->ImageToNCHW(image_data, tensor_data, cl_image->ImageDims(), cl_image->dims()); auto data = tensor_data; std::string sample = ""; if (check_shape) { for (int i = 0; i < cl_image->dims().size(); i++) { sample += " " + std::to_string(cl_image->dims()[i]); } } if (!is_sample_step) { sample_step = len / sample_num; } if (sample_step <= 0) { sample_step = 1; } for (int i = 0; i < len; i += sample_step) { sample += " " + std::to_string(data[i]); } std::cout << "auto-test" << " var " << var_name << sample << std::endl; } #else for (auto var_name : var_names) { auto out = paddle_mobile.Fetch(var_name); auto len = out->numel(); if (len == 0) { continue; } if (out->memory_size() == 0) { continue; } if (out->type() == type_id()) { auto data = out->data(); std::string sample = ""; if (check_shape) { for (int i = 0; i < out->dims().size(); i++) { sample += " " + std::to_string(out->dims()[i]); } } if (!is_sample_step) { sample_step = len / sample_num; } if (sample_step <= 0) { sample_step = 1; } for (int i = 0; i < len; i += sample_step) { sample += " " + std::to_string(data[i]); } std::cout << "auto-test" << " var " << var_name << sample << std::endl; } else if (out->type() == type_id()) { auto data = out->data(); std::string sample = ""; if (check_shape) { for (int i = 0; i < out->dims().size(); i++) { sample += " " + std::to_string(out->dims()[i]); } } if (!is_sample_step) { sample_step = len / sample_num; } if (sample_step <= 0) { sample_step = 1; } for (int i = 0; i < len; i += sample_step) { sample += " " + std::to_string(data[i]); } std::cout << "auto-test" << " var " << var_name << sample << std::endl; } } #endif std::cout << std::endl; } }