/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include #include #include class ThreadPool { public: static ThreadPool& getThreadPool(); static int getThreadPoolThreadId(); explicit ThreadPool(size_t); template auto enqueue(F&& f, Args&&... args) -> std::future::type>; ~ThreadPool(); int getTid(const std::thread::id& id) { for (int i = 0; i < workers.size(); i++) { if (workers[i].get_id() == id) { return i; } } return -1; } private: // need to keep track of threads so we can join them std::vector workers; // the task queue std::queue> tasks; // synchronization std::mutex queue_mutex; std::condition_variable condition; bool stop; }; // the constructor just launches some amount of workers inline ThreadPool::ThreadPool(size_t threads) : stop(false) { for (size_t i = 0; i < threads; ++i) workers.emplace_back([this] { for (;;) { std::function task; { std::unique_lock lock(this->queue_mutex); this->condition.wait( lock, [this] { return this->stop || !this->tasks.empty(); }); // for (;;) { // if (this->stop || !this->tasks.empty()) { // break; // } // lock.unlock(); // lock.lock(); // } if (this->stop && this->tasks.empty()) return; task = std::move(this->tasks.front()); this->tasks.pop(); } task(); } }); } // add new work item to the pool template auto ThreadPool::enqueue(F&& f, Args&&... args) -> std::future::type> { using return_type = typename std::result_of::type; auto task = std::make_shared>( std::bind(std::forward(f), std::forward(args)...)); std::future res = task->get_future(); { std::unique_lock lock(queue_mutex); // don't allow enqueueing after stopping the pool // if(stop) // throw std::runtime_error("enqueue on stopped ThreadPool"); tasks.emplace([task]() { (*task)(); }); } condition.notify_one(); return res; } // the destructor joins all threads inline ThreadPool::~ThreadPool() { { std::unique_lock lock(queue_mutex); stop = true; } condition.notify_all(); for (std::thread& worker : workers) worker.join(); } ThreadPool& ThreadPool::getThreadPool() { static ThreadPool threadPool(3); return threadPool; } int ThreadPool::getThreadPoolThreadId() { return getThreadPool().getTid(std::this_thread::get_id()); }