// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" #include "lite/tests/utils/fill_data.h" namespace paddle { namespace lite { std::vector CalStrides(const DDim& dims) { int dsize = dims.size(); std::vector strides(dsize, 1); for (int i = dsize - 2; i >= 0; i--) { strides[i] = strides[i + 1] * dims[i + 1]; } return strides; } std::vector CalIndex(const std::vector& strides, int offset) { int dsize = strides.size(); std::vector index(dsize, 0); for (int i = 0; i < dsize; i++) { index[i] = offset / strides[i]; offset %= strides[i]; } return index; } std::vector TransIndex(const std::vector& in_index, const std::vector& axis) { std::vector out_index(in_index.size(), 0); for (int i = 0; i < axis.size(); i++) { out_index[i] = in_index[axis[i]]; } return out_index; } int CalOffset(const std::vector& strides, const std::vector& index) { int offset = 0; for (int i = 0; i < index.size(); i++) { offset += strides[i] * index[i]; } return offset; } class TransposeComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string op_type_ = "transpose2"; std::string input_ = "x"; std::string output_ = "out"; std::string xshape_ = "xshape"; DDim dims_; std::vector axis_; public: TransposeComputeTester(const Place& place, const std::string& alias, DDim dims, std::vector axis) : TestCase(place, alias), dims_(dims), axis_(axis) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(output_); CHECK(out); auto* x = scope->FindTensor(input_); std::vector out_shape(dims_.size(), 0); for (size_t i = 0; i < dims_.size(); i++) { out_shape[i] = dims_[axis_[i]]; } out->Resize(out_shape); auto out_dims = out->dims(); std::vector x_strides = CalStrides(dims_); std::vector out_strides = CalStrides(out_dims); auto x_data = x->data(); auto out_data = out->mutable_data(); for (int i = 0; i < dims_.production(); i++) { std::vector x_index = CalIndex(x_strides, i); std::vector out_index = TransIndex(x_index, axis_); int out_offset = CalOffset(out_strides, out_index); out_data[out_offset] = x_data[i]; } if (op_type_ == "transpose2") { auto* xshape = scope->NewTensor(xshape_); auto xshape_dims = dims_.Vectorize(); xshape_dims.insert(xshape_dims.begin(), 0); xshape->Resize(xshape_dims); } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType(op_type_); op_desc->SetInput("X", {input_}); op_desc->SetOutput("Out", {output_}); if (op_type_ == "transpose2") { op_desc->SetOutput("XShape", {xshape_}); } op_desc->SetAttr("axis", axis_); } void PrepareData() override { std::vector din(dims_.production()); fill_data_rand(din.data(), -1.f, 1.f, dims_.production()); SetCommonTensor(input_, dims_, din.data()); } }; void TestTranspose2D(Place place, float abs_error) { DDim x_dims{{4, 5}}; std::vector> axes{{0, 1}, {1, 0}}; for (auto axis : axes) { std::unique_ptr tester( new TransposeComputeTester(place, "def", x_dims, axis)); arena::Arena arena(std::move(tester), place, abs_error); arena.TestPrecision({"xshape"}); } } void TestTranspose3D(Place place, float abs_error) { DDim x_dims{{3, 4, 5}}; std::vector> axes{ {0, 1, 2}, {0, 2, 1}, {1, 0, 2}, {2, 1, 0}}; for (auto axis : axes) { std::unique_ptr tester( new TransposeComputeTester(place, "def", x_dims, axis)); arena::Arena arena(std::move(tester), place, abs_error); arena.TestPrecision({"xshape"}); } } void TestTranspose4D(Place place, float abs_error) { DDim x_dims{{2, 3, 4, 5}}; std::vector> axes{ {0, 1, 2, 3}, {0, 1, 3, 2}, {0, 2, 1, 3}, {3, 1, 2, 0}, {3, 1, 0, 2}}; for (auto axis : axes) { std::unique_ptr tester( new TransposeComputeTester(place, "def", x_dims, axis)); arena::Arena arena(std::move(tester), place, abs_error); arena.TestPrecision({"xshape"}); } } TEST(Transpose, precision) { LOG(INFO) << "test Transpose op"; float abs_error = 2e-5; Place place; #if defined(LITE_WITH_XPU) && defined(LITE_WITH_XTCL) place = TARGET(kXPU); #elif defined(LITE_WITH_NPU) place = TARGET(kNPU); abs_error = 1e-2; // Using fp16 in NPU #elif defined(LITE_WITH_HUAWEI_ASCEND_NPU) place = TARGET(kHuaweiAscendNPU); abs_error = 1e-2; // precision_mode default is force_fp16 #else return; #endif TestTranspose2D(place, abs_error); TestTranspose3D(place, abs_error); TestTranspose4D(place, abs_error); } } // namespace lite } // namespace paddle