// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/x86/interpolate_compute.h" #include #include #include "lite/backends/x86/math/interpolate.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { void BilinearInterpCompute::Run() { auto& param = Param(); // required input lite::Tensor* X = param.X; // optionla inputs lite::Tensor* OutSize = param.OutSize; auto SizeTensor = param.SizeTensor; auto Scale = param.Scale; // output lite::Tensor* Out = param.Out; // optional attributes float scale = param.scale; int out_w = param.out_w; int out_h = param.out_h; int align_mode = param.align_mode; // required attributes bool align_corners = param.align_corners; std::string interp_method = "Bilinear"; lite::x86::math::interpolate(X, OutSize, SizeTensor, Scale, Out, scale, out_h, out_w, align_mode, align_corners, interp_method); } void NearestInterpCompute::Run() { auto& param = Param(); // required input lite::Tensor* X = param.X; // optionla inputs lite::Tensor* OutSize = param.OutSize; auto SizeTensor = param.SizeTensor; auto Scale = param.Scale; // output lite::Tensor* Out = param.Out; // optional attributes float scale = param.scale; int out_w = param.out_w; int out_h = param.out_h; int align_mode = param.align_mode; // required attributes bool align_corners = param.align_corners; std::string interp_method = "Nearest"; lite::x86::math::interpolate(X, OutSize, SizeTensor, Scale, Out, scale, out_h, out_w, align_mode, align_corners, interp_method); } } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(bilinear_interp, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::BilinearInterpCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))}) .BindInput("OutSize", {LiteType::GetTensorTy(TARGET(kX86), PRECISION(kInt32))}) .BindInput("SizeTensor", {LiteType::GetTensorTy(TARGET(kX86), PRECISION(kInt32))}) .BindInput("Scale", {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize(); REGISTER_LITE_KERNEL(nearest_interp, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::NearestInterpCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))}) .BindInput("OutSize", {LiteType::GetTensorTy(TARGET(kX86), PRECISION(kInt32))}) .BindInput("SizeTensor", {LiteType::GetTensorTy(TARGET(kX86), PRECISION(kInt32))}) .BindInput("Scale", {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize();