// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "ai_ddk_lib/include/graph/buffer.h" #include "ai_ddk_lib/include/graph/graph.h" #include "ai_ddk_lib/include/graph/model.h" #include "ai_ddk_lib/include/graph/op/all_ops.h" #include "ai_ddk_lib/include/graph/operator.h" #include "ai_ddk_lib/include/graph/operator_reg.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/utils.h" namespace paddle { namespace lite { namespace kernels { namespace npu { namespace bridges { node_map_type SplitConverter(const std::shared_ptr split_op, const node_map_type& inputs_map) { lite::Scope* scope = split_op->scope(); const lite::OpInfo* op_info = split_op->op_info(); auto op_type = op_info->Type(); auto unique_op_type = UniqueName(op_type); LOG(INFO) << "Converting " << op_type << " ... "; auto x_var_name = op_info->Input("X").front(); auto axis = op_info->GetAttr("axis"); auto num = op_info->GetAttr("num"); auto sections = op_info->GetAttr>("sections"); int64_t sections_num = static_cast(sections.size()); std::shared_ptr output_node = std::make_shared(unique_op_type); CHECK(inputs_map.count(x_var_name)); output_node->set_input_x(*inputs_map.at(x_var_name)); OpList::Global().add(inputs_map.at(x_var_name)); output_node->set_attr_axis(static_cast(axis)); if (num > 0) { output_node->set_attr_output_num(static_cast(num)); } else { output_node->set_attr_output_num(sections_num); auto size_split = ge::AttrValue::LIST_INT(sections.begin(), sections.end()); output_node->set_attr_size_split(size_split); } node_map_type outputs_map; auto out_var_names = op_info->Output("Out"); output_node->create_dynamic_output_y(out_var_names.size()); int index = 1; for (auto out_var_name : out_var_names) { auto const_node = std::make_shared( unique_op_type + "/const_zero" + std::to_string(index)); const_node->set_attr_value(CreateTensorAndFillData(0)); OpList::Global().add(const_node); auto add_node = std::make_shared(unique_op_type + "/add" + std::to_string(index)); add_node->set_input_x1(*output_node, "y" + std::to_string(index)); add_node->set_input_x2(*const_node); outputs_map[out_var_name] = add_node; OpList::Global().add(add_node); index++; } OpList::Global().add(output_node); return outputs_map; } } // namespace bridges } // namespace npu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_NPU_BRIDGE(split, paddle::lite::kernels::npu::bridges::SplitConverter);