/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef PRELU_OP #include "operators/kernel/prelu_kernel.h" #include #if __ARM_NEON #include #endif namespace paddle_mobile { namespace operators { template struct PReluFunctor { explicit PReluFunctor(float slope) { this->slope_ = slope; } inline T operator()(T in) const { return in > 0 ? in : in * slope_; } float slope_ = 0.0f; }; /* * @b 特化到具体平台的实现, param 从 op 层传入 * */ template <> void PReluKernel::Compute(const PReluParam ¶m) { auto *x = param.InputX(); auto *alpha = param.InputAlpha(); auto *out = param.Out(); std::string mode = param.Mode(); auto *x_ptr = x->data(); auto *o_ptr = out->mutable_data(); auto *alpha_ptr = alpha->data(); int numel = x->numel(); auto dim = x->dims(); int k = dim[0] * dim[1]; int n = dim[2] * dim[3]; int index = 0; int i = 0; int temp = 0; #if __ARM_NEON #pragma omp parallel for for (int i = 0; i < k; i++) { float32x4_t zero = vdupq_n_f32(0.0); float32x4_t cv; float32x4_t cv1; float32x4_t cv2; float32x4_t pv; for (int j = 0; (j + 3) < n; j += 4) { const float *in = x_ptr + i * n + j; float *out = o_ptr + i * n + j; cv = vld1q_f32(in); cv1 = vmaxq_f32(cv, zero); cv2 = vminq_f32(cv, zero); if (mode == "channel") { cv2 = vmulq_n_f32(cv2, alpha_ptr[i]); } else if (mode == "element") { pv = vld1q_f32(alpha_ptr + i * n + j); cv2 = vmulq_f32(cv2, pv); } else { cv2 = vmulq_n_f32(cv2, alpha_ptr[0]); } cv = vaddq_f32(cv1, cv2); vst1q_f32(out, cv); } int j; for (j = 0; (j + 3) < n; j += 4) { } for (int m = j; m < n; m++) { if (mode == "channel") { o_ptr[i * n + m] = x_ptr[i * n + m] > 0 ? x_ptr[i * n + m] : alpha_ptr[i] * x_ptr[i * n + m]; } else if (mode == "element") { o_ptr[i * n + m] = x_ptr[i * n + m] > 0 ? x_ptr[i * n + m] : alpha_ptr[i * n + m] * x_ptr[i * n + m]; } else { o_ptr[i * n + m] = x_ptr[i * n + m] > 0 ? x_ptr[i * n + m] : alpha_ptr[0] * x_ptr[i * n + m]; } } } #else if (mode == "channel") { temp = numel / (dim[0] * dim[1]); #pragma omp parallel for for (i = 0; i < numel; i++) { index = (i / temp) % dim[1]; o_ptr[i] = x_ptr[i] > 0 ? x_ptr[i] : alpha_ptr[index] * x_ptr[i]; } } else if (mode == "element") { #pragma omp parallel for for (i = 0; i < numel; i++) { o_ptr[i] = x_ptr[i] > 0 ? x_ptr[i] : alpha_ptr[i] * x_ptr[i]; } } else { #pragma omp parallel for for (i = 0; i < numel; i++) { o_ptr[i] = x_ptr[i] > 0 ? x_ptr[i] : alpha_ptr[0] * x_ptr[i]; } } #endif } } // namespace operators } // namespace paddle_mobile #endif