// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/crop_compute.h" #include #include #include "lite/arm/math/funcs.h" #include "lite/core/op_registry.h" #include "lite/core/tensor.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace arm { void CropCompute::crop_fun(const lite::Tensor* input, lite::Tensor* output) { auto input_dims = input->dims(); int num = input_dims[0]; int in_c = input_dims[1]; int in_h = input_dims[2]; int in_w = input_dims[3]; const float* ptr_in = input->data(); float* ptr_out = output->mutable_data(); for (int i = 0; i < num; ++i) { int offset_n = i * in_c * in_h * in_w; for (int j = c_off; j < c_end; ++j) { int offset_c = offset_n + j * in_h * in_w; for (int k = h_off; k < h_end; ++k) { int offset_h = offset_c + k * in_w; for (int l = w_off; l < w_end; ++l) { ptr_out[0] = ptr_in[offset_h + l]; ptr_out++; } } } } } void CropCompute::Run() { auto& param = Param(); const lite::Tensor* inputs = param.X; auto* out = param.Out; offsets_ = param.offsets; shape_ = param.shape; c_off = param.offsets[1]; h_off = param.offsets[2]; w_off = param.offsets[3]; c_end = shape_[1] + c_off; h_end = shape_[2] + h_off; w_end = shape_[3] + w_off; crop_fun(inputs, out); return; } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( crop, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::CropCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();