// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/api/light_api.h" namespace paddle { namespace lite { void LightPredictor::Build(const std::string& model_dir, lite_api::LiteModelType model_type) { cpp::ProgramDesc desc; LOG(INFO) << "Load model from " << model_dir; switch (model_type) { #ifndef LITE_ON_TINY_PUBLISH case lite_api::LiteModelType::kProtobuf: LoadModelPb(model_dir, scope_.get(), &desc); break; #endif case lite_api::LiteModelType::kNaiveBuffer: LoadModelNaive(model_dir, scope_.get(), &desc); break; default: LOG(FATAL) << "Unknown model type"; } BuildRuntimeProgram(desc); } Tensor* LightPredictor::GetInput(size_t offset) { auto* _feed_list = program_->exec_scope()->FindVar("feed"); CHECK(_feed_list) << "no feed variable in exec_scope"; auto* feed_list = _feed_list->GetMutable>(); if (offset >= feed_list->size()) { feed_list->resize(offset + 1); } return &feed_list->at(offset); } const Tensor* LightPredictor::GetOutput(size_t offset) { auto* _fetch_list = program_->exec_scope()->FindVar("fetch"); CHECK(_fetch_list) << "no fatch variable in exec_scope"; auto& fetch_list = *_fetch_list->GetMutable>(); CHECK_LT(offset, fetch_list.size()) << "offset " << offset << " overflow"; return &fetch_list.at(offset); } void LightPredictor::BuildRuntimeProgram(const cpp::ProgramDesc& prog) { std::vector insts; // 1. Create op first Program program(prog, scope_, {}); // 2. Create Instructs // Create the kernels of the target places, and filter out the specific // kernel with the target alias. for (auto& op : program.ops()) { auto kernel_type = op->op_info()->GetAttr(kKernelTypeAttr); std::string op_type, alias; Place place; KernelBase::ParseKernelType(kernel_type, &op_type, &alias, &place); auto kernels = op->CreateKernels({place}); // filter out a kernel auto it = std::find_if( kernels.begin(), kernels.end(), [&](std::unique_ptr& it) { return it->alias() == alias; }); CHECK(it != kernels.end()); (*it)->SetContext(ContextScheduler::Global().NewContext((*it)->target())); insts.emplace_back(op, std::move(*it)); } program_.reset(new RuntimeProgram(std::move(insts))); CHECK(program.exec_scope()); program_->set_exec_scope(program.exec_scope()); } LightPredictor::LightPredictor(const std::string& model_dir, lite_api::LiteModelType model_type) { scope_ = std::make_shared(); Build(model_dir, model_type); } } // namespace lite } // namespace paddle