// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/graph.h" #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/npu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace npu { int InterpolateConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[NPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x_type = kernel->GetInputDeclType("X"); CHECK(x_type->precision() == PRECISION(kFloat)); CHECK(x_type->layout() == DATALAYOUT(kNCHW)); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto x_h = x_dims[2]; auto x_w = x_dims[3]; CHECK_EQ(x_dims.size(), 4); auto out_name = op_info->Output("Out").front(); auto out_type = kernel->GetOutputDeclType("Out"); CHECK(out_type->precision() == PRECISION(kFloat)); CHECK(out_type->layout() == DATALAYOUT(kNCHW)); auto scale = op_info->GetAttr("scale"); auto out_w = op_info->GetAttr("out_w"); auto out_h = op_info->GetAttr("out_h"); auto align_corners = op_info->GetAttr("align_corners"); int align_mode = op_info->HasAttr("align_mode") ? op_info->GetAttr("align_mode") : 1; auto interp_method = op_info->GetAttr("interp_method"); if (align_mode == 0 && !align_corners) { LOG(WARNING) << "[NPU] align_mode = 0 && " "align_corners = false isn't " "supported in HiAI DDK"; return FAILED; } // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } // Priority: OutSize > scale > out_h/out_w if (scale > 0) { out_h = static_cast(x_h * scale); out_w = static_cast(x_w * scale); out_h = out_h > 0 ? out_h : -1; out_w = out_w > 0 ? out_w : -1; } // Update out_h and out_w and create out_size node if has OutSize std::shared_ptr out_size_node = nullptr; if (HasInputArg(op_info, scope, "OutSize")) { auto out_size_name = op_info->Input("OutSize").front(); auto out_size_type = kernel->GetInputDeclType("OutSize"); CHECK(out_size_type->precision() == PRECISION(kInt32)); CHECK(out_size_type->layout() == DATALAYOUT(kNCHW)); if (graph->Has(out_size_name)) { out_size_node = graph->Get(out_size_name); } else { auto out_size = scope->FindMutableTensor(out_size_name); CHECK_EQ(out_size->numel(), 2); CHECK(out_size->persistable()); auto out_size_data = out_size->mutable_data(); // Update out_h and out_w if has OutSize out_h = out_size_data[0]; out_w = out_size_data[1]; } } if (out_size_node == nullptr) { if (interp_method == "bilinear") { const float largest_multiple = 7.0f; float multiple = static_cast(x_h * x_w) / (out_h * out_w); if (multiple >= largest_multiple) { LOG(WARNING) << "[NPU] multiple=(ih*iw)/(oh*ow)=" << multiple << " is too large, should not exceed " << largest_multiple << " in HiAI DDK"; return FAILED; } } out_size_node = graph->Add(out_name + "/out_size", std::vector({out_h, out_w})); } if (interp_method == "bilinear") { auto bilinear_interp_node = graph->Add(out_name); auto bilinear_interp_op = bilinear_interp_node->data(); bilinear_interp_op->set_input_x(*x_node->data()); bilinear_interp_op->set_input_size(*out_size_node->data()); bilinear_interp_op->set_attr_align_corners(align_corners); } else if (interp_method == "nearest") { auto nearest_interp_node = graph->Add(out_name); auto nearest_interp_op = nearest_interp_node->data(); nearest_interp_op->set_input_image(*x_node->data()); nearest_interp_op->set_input_size(*out_size_node->data()); nearest_interp_op->set_attr_align_corners(align_corners); } else { LOG(WARNING) << "[NPU] Unsupported interpolate method: " << interp_method; return FAILED; } return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(bilinear_interp, kNPU, paddle::lite::subgraph::npu::InterpolateConverter); REGISTER_SUBGRAPH_BRIDGE(nearest_interp, kNPU, paddle::lite::subgraph::npu::InterpolateConverter);