/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ==============================================================================*/ #pragma once #include "../test_include.h" #include "operators/box_coder_op.h" namespace paddle_mobile { namespace framework { template class TestBoxCoderOp { public: explicit TestBoxCoderOp(const Program p) : program_(p) { if (use_optimize_) { to_predict_program_ = program_.optimizeProgram; } else { to_predict_program_ = program_.originProgram; } const std::vector> blocks = to_predict_program_->Blocks(); // DLOG << " **block size " << blocks.size(); for (auto block_desc : blocks) { std::vector> ops = block_desc->Ops(); // DLOG << " ops " << ops.size(); for (auto op : ops) { if (op->Type() == "box_coder" && op->Input("PriorBox")[0] == "concat_0.tmp_0") { DLOG << " mul attr size: " << op->GetAttrMap().size(); DLOG << " inputs size: " << op->GetInputs().size(); DLOG << " outputs size: " << op->GetOutputs().size(); DLOG << " Input PriorBox is : " << op->Input("PriorBox")[0]; DLOG << " Input PriorBoxVar is : " << op->Input("PriorBoxVar")[0]; DLOG << " Input TargetBox is : " << op->Input("TargetBox")[0]; DLOG << " OutputBox is : " << op->Output("OutputBox")[0]; DLOG << " code_type : " << op->GetAttrMap().at("code_type").Get(); std::shared_ptr> boxcoder = std::make_shared>( op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(), program_.scope); ops_of_block_[*block_desc.get()].push_back(boxcoder); } } } } std::shared_ptr predict_boxcoder(const Tensor &t1, const Tensor &t2, const Tensor &t3) { // feed auto scope = program_.scope; Variable *prior_box = scope->Var("concat_0.tmp_0"); auto tensor_x1 = prior_box->GetMutable(); tensor_x1->ShareDataWith(t1); Variable *prior_box_var = scope->Var("concat_1.tmp_0"); auto tensor_x2 = prior_box_var->GetMutable(); tensor_x2->ShareDataWith(t2); Variable *target_box = scope->Var("concat_2.tmp_0"); auto tensor_x3 = target_box->GetMutable(); tensor_x3->ShareDataWith(t3); Variable *boxes_output = scope->Var("box_coder_0.tmp_0"); auto *boxes_output_tensor = boxes_output->GetMutable(); boxes_output_tensor->mutable_data({1, 1917, 4}); // DLOG << typeid(output_tensor).name(); // DLOG << "output_tensor dims: " << output_tensor->dims(); std::shared_ptr outbox_tensor = std::make_shared(); outbox_tensor.reset(boxes_output_tensor); predict_boxcoder(t1, t2, t3, 0); return outbox_tensor; } private: const framework::Program program_; std::shared_ptr to_predict_program_; std::map>>> ops_of_block_; bool use_optimize_ = false; void predict_boxcoder(const Tensor &t1, const Tensor &t2, const Tensor &t3, int block_id) { std::shared_ptr to_predict_block = to_predict_program_->Block(block_id); for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) { auto op = ops_of_block_[*to_predict_block.get()][j]; DLOG << "op -> run()"; op->Run(); } } }; template class TestBoxCoderOp; } // namespace framework } // namespace paddle_mobile int main() { DLOG << "----------**********----------"; DLOG << "begin to run BoxCoderOp Test"; paddle_mobile::Loader loader; auto program = loader.Load(std::string("../../test/models/mobilenet+ssd")); paddle_mobile::framework::Tensor priorbox; SetupTensor(&priorbox, {1917, 4}, static_cast(0), static_cast(1)); auto *priorbox_ptr = priorbox.data(); paddle_mobile::framework::Tensor priorboxvar; SetupTensor(&priorboxvar, {1917, 4}, static_cast(0.1), static_cast(0.2)); auto *priorboxvar_ptr = priorboxvar.data(); paddle_mobile::framework::Tensor targetbox; SetupTensor(&targetbox, {1, 1917, 4}, static_cast(0), static_cast(1)); auto *targetbox_ptr = targetbox.data(); paddle_mobile::framework::TestBoxCoderOp testBoxCoderOp( program); auto output_boxcoder = testBoxCoderOp.predict_boxcoder(priorbox, priorboxvar, targetbox); auto output_boxcoder_ptr = output_boxcoder->data(); for (int i = 0; i < output_boxcoder->numel(); i++) { DLOG << output_boxcoder_ptr[i]; } DLOGF("\n"); /// testing 25th bbox. DLOG << "PriorBox**************"; DLOG << priorbox_ptr[100]; DLOG << priorbox_ptr[101]; DLOG << priorbox_ptr[102]; DLOG << priorbox_ptr[103]; DLOG << "PriorBoxVar**************"; DLOG << priorboxvar_ptr[100]; DLOG << priorboxvar_ptr[101]; DLOG << priorboxvar_ptr[102]; DLOG << priorboxvar_ptr[103]; DLOG << "TargetBox***************"; DLOG << targetbox_ptr[100]; DLOG << targetbox_ptr[101]; DLOG << targetbox_ptr[102]; DLOG << targetbox_ptr[103]; DLOG << "OutputBox**************"; DLOG << output_boxcoder_ptr[100]; DLOG << output_boxcoder_ptr[101]; DLOG << output_boxcoder_ptr[102]; DLOG << output_boxcoder_ptr[103]; DLOG << "***********----------------------**************"; auto priorbox_w = priorbox_ptr[102] - priorbox_ptr[100]; auto priorbox_h = priorbox_ptr[103] - priorbox_ptr[101]; auto priorbox_center_x = (priorbox_ptr[100] + priorbox_ptr[102]) / 2; auto priorbox_center_y = (priorbox_ptr[101] + priorbox_ptr[103]) / 2; DLOG << "prior box width : " << priorbox_w; DLOG << "prior box height : " << priorbox_h; DLOG << "prior box center x : " << priorbox_center_x; DLOG << "prior box center y : " << priorbox_center_y; auto target_box_center_x = priorboxvar_ptr[100] * targetbox_ptr[100] * priorbox_w + priorbox_center_x; DLOG << "target_box_center_x : " << target_box_center_x; auto target_box_center_y = priorboxvar_ptr[101] * targetbox_ptr[101] * priorbox_h + priorbox_center_y; DLOG << "target_box_center_y : " << target_box_center_y; auto target_box_width = std::exp(priorboxvar_ptr[102] * targetbox_ptr[102]) * priorbox_w; DLOG << "target_box_width : " << target_box_width; auto target_box_height = std::exp(priorboxvar_ptr[103] * targetbox_ptr[103]) * priorbox_h; DLOG << "target_box_height : " << target_box_height; DLOG << "pre x min : " << target_box_center_x - target_box_width / 2; DLOG << "pre y min : " << target_box_center_y - target_box_height / 2; DLOG << "pre x max : " << target_box_center_x + target_box_width / 2; DLOG << "pre y max : " << target_box_center_y + target_box_height / 2; return 0; }