/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "lite/backends/x86/math/sequence_topk_avg_pooling.h" #include #include namespace paddle { namespace lite { namespace x86 { namespace math { template void get_topk_pos(const T* data, int length, int k, int* pos, bool debug) { size_t real_k = k < length ? k : length; std::vector v(data, data + length); std::vector topk_pos; T min_val = -10000000.0; while (topk_pos.size() < real_k) { T max_val = min_val; int max_pos = -1; for (int i = 0; i < length; ++i) { if (v[i] > max_val) { max_pos = i; max_val = v[i]; } } assert(max_pos >= 0); topk_pos.push_back(max_pos); v[max_pos] = min_val; } assert(topk_pos.size() > 0); while (topk_pos.size() < (size_t)k) { topk_pos.push_back(-1); } for (size_t i = 0; i < topk_pos.size(); ++i) { pos[i] = topk_pos[i]; } } /* * All tensors' dimension should be the same and the values of * each dimension must be the same, except the axis dimension. */ template class SequenceTopkAvgPoolingFunctor { public: void operator()(const lite::Tensor& in, const lite::Tensor& row, const lite::Tensor& col, lite::Tensor* out, lite::Tensor* pos, int channel_num, std::vector topks) { auto k_num = topks.size(); auto max_k = topks[topks.size() - 1]; std::vector vec_pos_shape; auto in_lod = in.lod()[0]; auto row_lod = row.lod()[0]; auto col_lod = col.lod()[0]; int batch_size = row_lod.size() - 1; int pos_total_size = row_lod[batch_size] * channel_num * max_k; vec_pos_shape.push_back(pos_total_size); lite::DDim dims(vec_pos_shape); pos->Resize(dims); auto pos_data = pos->mutable_data(lite::TargetType::kX86); int offset = 0; std::vector vec_out_lod; vec_out_lod.reserve(batch_size + 1); for (int i = 0; i <= batch_size; ++i) { offset = row_lod[i]; vec_out_lod.push_back(offset); } lite::LoD lod_temp; lod_temp.push_back(vec_out_lod); out->set_lod(lod_temp); auto in_data = in.data(); auto out_data = out->template mutable_data(lite::TargetType::kX86); T* sum_data = new T[max_k]; for (int i = 0; i < batch_size; ++i) { int total_size = in_lod[i + 1] - in_lod[i]; int row_size = row_lod[i + 1] - row_lod[i]; int col_size = col_lod[i + 1] - col_lod[i]; CHECK_EQ(total_size, channel_num * row_size * col_size) << "size wrong in sequence_topk_avg_pooling_op!"; int feature_num = row_size * col_size; for (int j = 0; j < channel_num; ++j) { auto input_offset_feature_data = in_data + in_lod[i] + j * feature_num; for (int r = 0; r < row_size; ++r) { auto row_data = input_offset_feature_data + r * col_size; auto pos_slice_data = pos_data + row_lod[i] * channel_num * max_k + r * channel_num * max_k + j * max_k; auto out_slice_data = out_data + row_lod[i] * channel_num * k_num + r * channel_num * k_num + j * k_num; get_topk_pos(row_data, col_size, max_k, pos_slice_data); if (pos_slice_data[0] == -1) { sum_data[0] = 0.0; } else { sum_data[0] = row_data[pos_slice_data[0]]; } for (int k = 1; k < max_k; ++k) { if (pos_slice_data[k] == -1) { sum_data[k] = sum_data[k - 1]; } else { sum_data[k] = sum_data[k - 1] + row_data[pos_slice_data[k]]; } } for (size_t k = 0; k < k_num; ++k) { out_slice_data[k] = sum_data[topks[k] - 1] / topks[k]; } } } } delete[] sum_data; } }; #define DEFINE_FUNCTOR(type) \ template class SequenceTopkAvgPoolingFunctor; FOR_ALL_TYPES(DEFINE_FUNCTOR); } // namespace math } // namespace x86 } // namespace lite } // namespace paddle