/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "lite/backends/x86/math/cross_entropy.h" namespace paddle { namespace lite { namespace x86 { namespace math { template using EigenMatrix = lite::fluid::EigenMatrix; template class CrossEntropyFunctor { public: void operator()(const lite::X86Context& ctx, lite::Tensor* out, const lite::Tensor* prob, const lite::Tensor* labels, const bool softLabel, const int ignore_index, const int axis_dim) { const int batch_size = prob->dims()[0]; const int num_classes = prob->dims()[1]; const int num_remain = num_classes / axis_dim; Eigen::DSizes batch_axis_remain(batch_size, axis_dim, num_remain); if (softLabel) { auto in = EigenMatrix::From(*prob); auto lbl = EigenMatrix::From(*labels); auto loss = EigenMatrix::From(*out); loss.device(lite::fluid::EigenDeviceType()) = -((lbl * in.log().unaryExpr(math::TolerableValue())) .reshape(batch_axis_remain) .sum(Eigen::DSizes(1))); } else { const T* prob_data = prob->template data(); T* loss_data = out->template mutable_data(); const int64_t* label_data = labels->data(); for (int i = 0; i < batch_size; ++i) { for (int j = 0; j < num_remain; j++) { int lbl = label_data[i * num_remain + j]; PADDLE_ENFORCE((lbl >= 0 && lbl < axis_dim) || lbl == ignore_index); int index = i * num_classes + lbl * num_remain + j; int loss_idx = i * num_remain + j; loss_data[loss_idx] = lbl == ignore_index ? 0 : -math::TolerableValue()(std::log(prob_data[index])); } } } } }; template class CrossEntropyFunctor; template class CrossEntropyFunctor; } // namespace math } // namespace x86 } // namespace lite } // namespace paddle