// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/x86/pool_compute.h" #include #include #include #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { TEST(pool_x86, retrive_op) { auto pool2d = KernelRegistry::Global().Create( "pool2d"); ASSERT_FALSE(pool2d.empty()); ASSERT_TRUE(pool2d.front()); } TEST(pool2d_x86, init) { PoolCompute pool2d; ASSERT_EQ(pool2d.precision(), PRECISION(kFloat)); ASSERT_EQ(pool2d.target(), TARGET(kX86)); } TEST(pool2d_x86, run_test) { lite::Tensor x, out; constexpr int batch_size = 1; std::vector x_shape{batch_size, 3, 4, 4}; x.Resize(lite::DDim(x_shape)); std::vector out_shape{batch_size, 3, 2, 2}; out.Resize(lite::DDim(out_shape)); auto x_data = x.mutable_data(); auto out_data = out.mutable_data(); for (int64_t i = 0; i < x.dims().production(); i++) { x_data[i] = static_cast(i); } PoolCompute pool2d; operators::PoolParam param; param.x = &x; param.output = &out; param.strides = {2, 2}; param.paddings = {0, 0}; param.ksize = {2, 2}; param.pooling_type = "max"; pool2d.SetParam(param); pool2d.Run(); LOG(INFO) << "output: "; for (int i = 0; i < out.dims().production(); i++) { LOG(INFO) << out_data[i]; } } } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_KERNEL(pool2d, kX86, kFloat, kNCHW, def);