# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys import argparse import math import numpy import paddle import paddle.fluid as fluid def parse_args(): parser = argparse.ArgumentParser("fit_a_line") parser.add_argument( '--save_model', action='store_true', help="Whether to save main program") parser.add_argument( '--num_steps', type=int, default=1000000000000, help="train steps") parser.add_argument( '--num_epochs', type=int, default=100, help="number of epochs.") parser.add_argument( '--batch_size', type=int, default=20, help="batch size.") parser.add_argument( '--shuffle', action='store_true', help="Whether to shuffle train data.") args = parser.parse_args() return args # For training test cost def train_test(executor, program, reader, feeder, fetch_list): accumulated = 1 * [0] count = 0 for data_test in reader(): outs = executor.run( program=program, feed=feeder.feed(data_test), fetch_list=fetch_list) accumulated = [x_c[0] + x_c[1][0] for x_c in zip(accumulated, outs)] count += 1 return [x_d / count for x_d in accumulated] def main(): if args.shuffle: print("doing shuffle") train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.uci_housing.train(), buf_size=500), batch_size=args.batch_size) else: train_reader = paddle.batch( paddle.dataset.uci_housing.train(), batch_size=args.batch_size) # feature vector of length 13 x = fluid.data(name='x', shape=[None, 13], dtype='float32') y = fluid.data(name='y', shape=[None, 1], dtype='float32') main_program = fluid.default_main_program() startup_program = fluid.default_startup_program() main_program.random_seed = 90 startup_program.random_seed = 90 y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_loss = fluid.layers.mean(cost) test_program = main_program.clone(for_test=True) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(avg_loss) place = fluid.CPUPlace() exe = fluid.Executor(place) num_epochs = args.num_epochs # main train loop. feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe.run(startup_program) if args.save_model: fluid.io.save_persistables(exe, "model_dir") # add feed and fetch op feeded_var_names = ['x', 'y'] fetch_var_names = ['mean_0.tmp_0'] fluid.io.prepend_feed_ops(main_program, feeded_var_names) fluid.io.append_fetch_ops(main_program, fetch_var_names) with open("model_dir/__model__", "wb") as f: f.write(main_program.desc.serialize_to_string()) with open("debug_main_program", "w") as f: f.write(str(main_program)) print("train model saved to model_dir") return train_prompt = "Train cost" step = 0 for pass_id in range(num_epochs): for data_train in train_reader(): avg_loss_value, = exe.run( main_program, feed=feeder.feed(data_train), fetch_list=[avg_loss]) print("%s, Step %d, Cost %f" % (train_prompt, step, avg_loss_value[0])) if step == args.num_steps - 1: return step += 1 if math.isnan(float(avg_loss_value[0])): sys.exit("got NaN loss, training failed.") if __name__ == '__main__': args = parse_args() main()